Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points
Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 319-327

Voir la notice de l'article provenant de la source Math-Net.Ru

Semiclassical spectral series of the Laplace operator on a two-dimensional surface of revolution with a conical point are described. It is shown that in many cases asymptotic eigenvalues can be calculated from the quantization conditions on special Lagrangian tori, with the Maslov index of such tori being replaced by a real invariant expressed in terms of the cone apex angle.
@article{TRSPY_2019_307_a17,
     author = {A. I. Shafarevich},
     title = {Lagrangian {Tori} and {Quantization} {Conditions} {Corresponding} to {Spectral} {Series} of the {Laplace} {Operator} on a {Surface} of {Revolution} with {Conical} {Points}},
     journal = {Informatics and Automation},
     pages = {319--327},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a17/}
}
TY  - JOUR
AU  - A. I. Shafarevich
TI  - Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points
JO  - Informatics and Automation
PY  - 2019
SP  - 319
EP  - 327
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a17/
LA  - ru
ID  - TRSPY_2019_307_a17
ER  - 
%0 Journal Article
%A A. I. Shafarevich
%T Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points
%J Informatics and Automation
%D 2019
%P 319-327
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a17/
%G ru
%F TRSPY_2019_307_a17
A. I. Shafarevich. Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 319-327. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a17/