Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_307_a17, author = {A. I. Shafarevich}, title = {Lagrangian {Tori} and {Quantization} {Conditions} {Corresponding} to {Spectral} {Series} of the {Laplace} {Operator} on a {Surface} of {Revolution} with {Conical} {Points}}, journal = {Informatics and Automation}, pages = {319--327}, publisher = {mathdoc}, volume = {307}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a17/} }
TY - JOUR AU - A. I. Shafarevich TI - Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points JO - Informatics and Automation PY - 2019 SP - 319 EP - 327 VL - 307 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a17/ LA - ru ID - TRSPY_2019_307_a17 ER -
%0 Journal Article %A A. I. Shafarevich %T Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points %J Informatics and Automation %D 2019 %P 319-327 %V 307 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a17/ %G ru %F TRSPY_2019_307_a17
A. I. Shafarevich. Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 319-327. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a17/
[1] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Asymptotics, related to billiards with semi-rigid walls, of eigenfunctions of the $\nabla D(x)\nabla $ operator in dimension 2 and trapped coastal waves”, Math. Notes, 105:5 (2019), 789–794 | DOI | DOI | MR | Zbl
[2] S. Yu. Dobrokhotov and V. E. Nazaikinskii, “Characteristics with singularities and the boundary values of the asymptotic solution of the Cauchy problem for a degenerate wave equation”, Math. Notes, 100:5 (2016), 695–713 | DOI | DOI | MR | Zbl
[3] M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations, Nauka, Moscow, 1983 | MR | Zbl | Zbl
[4] Asymptotic Analysis: Linear Ordinary Differential Equations, Springer, Berlin, 1993 | MR | Zbl | Zbl
[5] T. A. Filatova and A. I. Shafarevich, “Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere”, Theor. Math. Phys., 164:2 (2010), 1064–1080 | DOI | DOI | MR | Zbl
[6] Hillairet L., “Spectral theory of translation surfaces: A short introduction”, Actes de séminaire de théorie spectrale et géométrie. Année 2009–2010, Semin. théor. spectr. géom., 28, Univ. Grenoble I, Inst. Fourier, St. Martin d'Hères, 2010, 51–62 | MR | Zbl
[7] V. P. Maslov, Asymptotic Methods and Perturbation Theory, Nauka, Moscow, 1988 (in Russian) | MR | Zbl
[8] V. P. Maslov and M. V. Fedoryuk, Semi-classical Approximation for Equations of Quantum Mechanics, Nauka, Moscow, 1976 | MR | Zbl
[9] Semi-classical Approximation in Quantum Mechanics, Math. Phys. Appl. Math., 7, Reidel, Dordrecht, 1981 | MR | Zbl
[10] V. E. Nazaikinskii, “Degenerate wave equation with localized initial data: Asymptotic solutions corresponding to various self-adjoint extensions”, Math. Notes, 89:5 (2011), 749–753 | DOI | DOI | MR | Zbl
[11] V. E. Nazaikinskii, “Phase space geometry for a wave equation degenerating on the boundary of the domain”, Math. Notes, 92:1 (2012), 144–148 | DOI | DOI | MR | Zbl
[12] V. E. Nazaikinskii, “The Maslov canonical operator on Lagrangian manifolds in the phase space corresponding to a wave equation degenerating on the boundary”, Math. Notes, 96:2 (2014), 248–260 | DOI | DOI | MR | Zbl
[13] T. Ratiu, T. A. Filatova, and A. I. Shafarevich, “Noncompact Lagrangian manifolds corresponding to the spectral series of the Schrödinger operator with delta-potential on a surface of revolution”, Dokl. Math., 86:2 (2012), 694–696 | DOI | MR | Zbl
[14] Ratiu T.S., Suleimanova A.A., Shafarevich A.I., “Spectral series of the Schrödinger operator with delta-potential on a three-dimensional spherically symmetric manifold”, Russ. J. Math. Phys., 20:3 (2013), 326–335 | DOI | MR | Zbl