Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_307_a16, author = {G. B. Shabat}, title = {Belyi {Pairs} and {Fried} {Families}}, journal = {Informatics and Automation}, pages = {306--318}, publisher = {mathdoc}, volume = {307}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a16/} }
G. B. Shabat. Belyi Pairs and Fried Families. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 306-318. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a16/
[1] N. M. Adrianov and G. B. Shabat, “Belyi functions of dessins d'enfants of genus 2 with 4 edges”, Russ. Math. Surv., 60:6 (2005), 1237–1239 | DOI | DOI | MR | Zbl
[2] Bailey P., Fried M.D., “Hurwitz monodromy, spin separation and higher levels of a Modular Tower”, Arithmetic fundamental groups and noncommutative algebra, Proc. 1999 von Neumann Conf. (Berkeley, CA, 1999), Proc. Symp. Pure Math., 70, Amer. Math. Soc., Providence, RI, 2002, 79–220 | DOI | MR | Zbl
[3] Beckmann S., “Ramified primes in the field of moduli of branched coverings of curves”, J. Algebra, 125:1 (1989), 236–255 | DOI | MR | Zbl
[4] G. V. Belyĭ, “On Galois extensions of a maximal cyclotomic field”, Math. USSR, Izv., 14:2 (1980), 247–256 | DOI | MR | Zbl | Zbl
[5] Diaz S., Donagi R., Harbater D., “Every curve is a Hurwitz space”, Duke Math. J., 59:3 (1989), 737–746 | DOI | MR | Zbl
[6] Fried M., “Fields of definition of function fields and Hurwitz families—Groups as Galois groups”, Commun. Algebra, 5 (1977), 17–82 | DOI | MR | Zbl
[7] Girondo E., González-Diez G., Introduction to compact Riemann surfaces and dessins d'enfants, Cambridge Univ. Press, Cambridge, 2012 | MR | Zbl
[8] Grothendieck A., “Esquisse d'un programme (sketch of a programme)”, Geometric Galois actions, v. 1, LMS Lect. Note Ser., 242, Around Grothendieck's “Esquisse d'un programme”, Cambridge Univ. Press, Cambridge, 1997, 5–48; 243–283 | MR | Zbl
[9] A. Hurwitz, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen. Herausgegeben und ergänzt durch einen Abschnitt über geometrische Funktionentheorie von R. Courant, Grundl. Math. Wiss., 3, Springer, Berlin, 1964 | MR | Zbl
[10] Javanpeykar A., Voight J., The Belyi degree of a curve is computable, E-print, 2018, arXiv: 1711.00125v2 [math.NT] | MR
[11] Kazarian M., Zograf P., “Virasoro constraints and topological recursion for Grothendieck's dessin counting”, Lett. Math. Phys., 105:8 (2015), 1057–1084 | DOI | MR | Zbl
[12] Lando S.K., Zvonkin A.K., Graphs on surfaces and their applications, Encycl. Math. Sci., 141, Springer, Berlin, 2004 | MR | Zbl
[13] McMullen C.T., “From dynamics on surfaces to rational points on curves”, Bull. Amer. Math. Soc., 37:2 (2000), 119–140 | DOI | MR | Zbl
[14] A. N. Paršin, “Algebraic curves over function fields”, Sov. Math., Dokl., 9 (1968), 1419–1422 | MR | Zbl
[15] G. B. Shabat, “Unicellular four-edged toric dessins”, J. Math. Sci., 209:2 (2015), 309–318 | DOI | MR | Zbl
[16] Shabat G., “Counting Belyi pairs over finite fields”, 2016 MATRIX annals, MATRIX Book Ser., 1, Springer, Cham, 2018, 305–322 | DOI | MR | Zbl
[17] Shabat G., Belyi pairs in the critical filtrations of Hurwitz spaces, E-print, 2019, arXiv: 1902.02034 [math.AG]
[18] I. R. Šafarevič, “Algebraic number fields”, Proc. Int. Congr. Math. (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 163–176 | MR
[19] Am. Math. Soc. Transl., Ser. 2, 31 (1963), 25–39 | MR
[20] Sijsling J., Voight J., “On computing Belyi maps”, Méthodes arithmétiques et applications: Numéro consacré au trimestre, aut. 2013, Publ. Math. Besançon: Algèbre et Théorie des Nombres; N 2014/1, Pres. Univ. Franche-Comté, Besançon, 2014, 73–131 | MR | Zbl
[21] P. G. Zograf and L. A. Takhtadzhyan, “On Liouville's equation, accessory parameters, and the geometry of Teichmüller space for Riemann surfaces of genus 0”, Math. USSR, Sb., 60:1 (1988), 143–161 | DOI | MR | Zbl | Zbl