The Tate--Oort Group Scheme $\mathbb {TO}_p$
Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 267-290

Voir la notice de l'article provenant de la source Math-Net.Ru

Over an algebraically closed field of characteristic $p$, there are three group schemes of order $p$, namely the ordinary cyclic group $\mathbb Z/p$, the multiplicative group $\boldsymbol \mu _p\subset \mathbb G_\mathrm{m}$ and the additive group $\boldsymbol \alpha _p\subset \mathbb G_\mathrm{a}$. The Tate–Oort group scheme $\mathbb {TO}_p$ puts these into one happy family, together with the cyclic group of order $p$ in characteristic zero. This paper studies a simplified form of $\mathbb {TO}_p$, focusing on its representation theory and basic applications in geometry. A final section describes more substantial applications to varieties having $p$-torsion in $\mathrm {Pic}^\tau $, notably the $5$-torsion Godeaux surfaces and Calabi–Yau threefolds obtained from $\mathbb {TO}_5$-invariant quintics.
@article{TRSPY_2019_307_a14,
     author = {Miles Reid},
     title = {The {Tate--Oort} {Group} {Scheme} $\mathbb {TO}_p$},
     journal = {Informatics and Automation},
     pages = {267--290},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a14/}
}
TY  - JOUR
AU  - Miles Reid
TI  - The Tate--Oort Group Scheme $\mathbb {TO}_p$
JO  - Informatics and Automation
PY  - 2019
SP  - 267
EP  - 290
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a14/
LA  - ru
ID  - TRSPY_2019_307_a14
ER  - 
%0 Journal Article
%A Miles Reid
%T The Tate--Oort Group Scheme $\mathbb {TO}_p$
%J Informatics and Automation
%D 2019
%P 267-290
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a14/
%G ru
%F TRSPY_2019_307_a14
Miles Reid. The Tate--Oort Group Scheme $\mathbb {TO}_p$. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 267-290. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a14/