The Tate--Oort Group Scheme $\mathbb {TO}_p$
Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 267-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

Over an algebraically closed field of characteristic $p$, there are three group schemes of order $p$, namely the ordinary cyclic group $\mathbb Z/p$, the multiplicative group $\boldsymbol \mu _p\subset \mathbb G_\mathrm{m}$ and the additive group $\boldsymbol \alpha _p\subset \mathbb G_\mathrm{a}$. The Tate–Oort group scheme $\mathbb {TO}_p$ puts these into one happy family, together with the cyclic group of order $p$ in characteristic zero. This paper studies a simplified form of $\mathbb {TO}_p$, focusing on its representation theory and basic applications in geometry. A final section describes more substantial applications to varieties having $p$-torsion in $\mathrm {Pic}^\tau $, notably the $5$-torsion Godeaux surfaces and Calabi–Yau threefolds obtained from $\mathbb {TO}_5$-invariant quintics.
@article{TRSPY_2019_307_a14,
     author = {Miles Reid},
     title = {The {Tate--Oort} {Group} {Scheme} $\mathbb {TO}_p$},
     journal = {Informatics and Automation},
     pages = {267--290},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a14/}
}
TY  - JOUR
AU  - Miles Reid
TI  - The Tate--Oort Group Scheme $\mathbb {TO}_p$
JO  - Informatics and Automation
PY  - 2019
SP  - 267
EP  - 290
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a14/
LA  - ru
ID  - TRSPY_2019_307_a14
ER  - 
%0 Journal Article
%A Miles Reid
%T The Tate--Oort Group Scheme $\mathbb {TO}_p$
%J Informatics and Automation
%D 2019
%P 267-290
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a14/
%G ru
%F TRSPY_2019_307_a14
Miles Reid. The Tate--Oort Group Scheme $\mathbb {TO}_p$. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 267-290. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a14/

[1] Bombieri E., Mumford D., “Enriques' classification of surfaces in char. $p$. III”, Invent. math., 35 (1976), 197–232 | DOI | MR | Zbl

[2] Bosma W., Cannon J., Playoust C., “The Magma algebra system. I: The user language”, J. Symb. Comput., 24:3–4 (1997), 235–265 | DOI | MR | Zbl

[3] Deligne P., Rapoport M., “Les schémas de modules de courbes elliptiques”, Modular functions of one variable II, Proc. Int. Summer Sch. (Antwerp, 1972), Lect. Notes Math., 349, Springer, Berlin, 1973, 143–316 | DOI | MR

[4] Jacobson N., Lectures in abstract algebra, v. III, Theory of fields and Galois theory, D. Van Nostrand, Princeton, NJ, 1964 | MR | Zbl

[5] Kim S., “Numerical Godeaux surfaces with an involution in positive characteristic”, Proc. Japan Acad. Ser. A, 90:8 (2014), 113–118 | DOI | MR | Zbl

[6] Liedtke C., “Arithmetic moduli and lifting of Enriques surfaces”, J. reine angew. Math., 706 (2015), 35–65 | MR | Zbl

[7] Magma calculator http://magma.maths.usyd.edu.au/calc/

[8] Nanninga P.M., “Cauchy–Mirimanoff and related polynomials”, J. Aust. Math. Soc., 92:2 (2012), 269–280 | DOI | MR | Zbl

[9] Nanninga P.M., On Cauchy–Mirimanoff and related polynomials, PhD Thesis, Aust. Natl. Univ., Canberra, 2013 | MR

[10] Reid M., The Tate–Oort group scheme $\mathbb {TO}_p$ and Godeaux surfaces https://www.warwick.ac.uk/staff/Miles.Reid/TOp

[11] A. N. Rudakov and I. R. Šafarevič, “Inseparable morphisms of algebraic surfaces”, Math. USSR, Izv., 10:6 (1976), 1205–1237 | DOI | MR | MR | Zbl

[12] Tate J., “Finite flat group schemes”, Modular forms and Fermat's Last Theorem, Papers from a conf. (Boston, 1995), Springer, New York, 1997, 121–154 | DOI | MR | Zbl

[13] Tate J., Oort F., “Group schemes of prime order”, Ann. sci. Éc. norm. supér. Sér. 4, 3 (1970), 1–21 | MR | Zbl