Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_307_a14, author = {Miles Reid}, title = {The {Tate--Oort} {Group} {Scheme} $\mathbb {TO}_p$}, journal = {Informatics and Automation}, pages = {267--290}, publisher = {mathdoc}, volume = {307}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a14/} }
Miles Reid. The Tate--Oort Group Scheme $\mathbb {TO}_p$. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 267-290. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a14/
[1] Bombieri E., Mumford D., “Enriques' classification of surfaces in char. $p$. III”, Invent. math., 35 (1976), 197–232 | DOI | MR | Zbl
[2] Bosma W., Cannon J., Playoust C., “The Magma algebra system. I: The user language”, J. Symb. Comput., 24:3–4 (1997), 235–265 | DOI | MR | Zbl
[3] Deligne P., Rapoport M., “Les schémas de modules de courbes elliptiques”, Modular functions of one variable II, Proc. Int. Summer Sch. (Antwerp, 1972), Lect. Notes Math., 349, Springer, Berlin, 1973, 143–316 | DOI | MR
[4] Jacobson N., Lectures in abstract algebra, v. III, Theory of fields and Galois theory, D. Van Nostrand, Princeton, NJ, 1964 | MR | Zbl
[5] Kim S., “Numerical Godeaux surfaces with an involution in positive characteristic”, Proc. Japan Acad. Ser. A, 90:8 (2014), 113–118 | DOI | MR | Zbl
[6] Liedtke C., “Arithmetic moduli and lifting of Enriques surfaces”, J. reine angew. Math., 706 (2015), 35–65 | MR | Zbl
[7] Magma calculator http://magma.maths.usyd.edu.au/calc/
[8] Nanninga P.M., “Cauchy–Mirimanoff and related polynomials”, J. Aust. Math. Soc., 92:2 (2012), 269–280 | DOI | MR | Zbl
[9] Nanninga P.M., On Cauchy–Mirimanoff and related polynomials, PhD Thesis, Aust. Natl. Univ., Canberra, 2013 | MR
[10] Reid M., The Tate–Oort group scheme $\mathbb {TO}_p$ and Godeaux surfaces https://www.warwick.ac.uk/staff/Miles.Reid/TOp
[11] A. N. Rudakov and I. R. Šafarevič, “Inseparable morphisms of algebraic surfaces”, Math. USSR, Izv., 10:6 (1976), 1205–1237 | DOI | MR | MR | Zbl
[12] Tate J., “Finite flat group schemes”, Modular forms and Fermat's Last Theorem, Papers from a conf. (Boston, 1995), Springer, New York, 1997, 121–154 | DOI | MR | Zbl
[13] Tate J., Oort F., “Group schemes of prime order”, Ann. sci. Éc. norm. supér. Sér. 4, 3 (1970), 1–21 | MR | Zbl