Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_306_a23, author = {E. M. Chirka}, title = {Equilibrium {Measures} on a {Compact} {Riemann} {Surface}}, journal = {Informatics and Automation}, pages = {313--351}, publisher = {mathdoc}, volume = {306}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a23/} }
E. M. Chirka. Equilibrium Measures on a Compact Riemann Surface. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 313-351. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a23/
[1] M. Brelot, Éléments de la théorie classique du potentiel, Centre Doc. Univ., Paris, 1961 ; Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR
[2] L. Carleson, Selected Problems on Exceptional Sets, D. Van Nostrand Co., Princeton, NJ, 1967 | MR | Zbl
[3] E. M. Chirka, Riemann Surfaces, Lekts. Kursy Nauchno-Obrazov. Tsentra, 1, Steklov Math. Inst., Moscow, 2006 | DOI | Zbl
[4] E. M. Chirka, “Harnack inequalities, Kobayashi distances and holomorphic motions”, Proc. Steklov Inst. Math., 279 (2012), 194–206 | DOI | DOI | MR | Zbl
[5] E. M. Chirka, “Potentials on a compact Riemann surface”, Proc. Steklov Inst. Math., 301 (2018), 272–303 | DOI | DOI | MR | Zbl
[6] Doob J.L., Classical potential theory and its probabilistic counterpart, Grundl. Math. Wiss., 262, Springer, New York, 1984 | MR | Zbl
[7] S. I. Fedorov, “On a variational problem of Chebotarev in the theory of capacity of plane sets and covering theorems for univalent conformal mappings”, Math. USSR, Sb., 52:1 (1985), 115–133 | DOI | MR | Zbl | Zbl
[8] Forster O., Riemannsche Flächen, Springer, Berlin, 1977 ; Forster O., Rimanovy poverkhnosti, Mir, M., 1980; O. Forster, Riemannsche Flächen, Springer, Berlin, 1977 ; Lectures on Riemann Surfaces, Springer, New York, 1981 | MR | Zbl | MR | Zbl
[9] Frostman O., Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddelanden Lunds Univ. Mat. Sem., 3, Gleerup, Lund, 1935
[10] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Nauka, Moscow, 1966 | DOI | MR | MR | Zbl | Zbl
[11] Transl. Math. Monogr., 26, Am. Math. Soc., Providence, RI, 1969 ; Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980 | DOI | MR | MR | Zbl | Zbl | MR
[12] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic, London, 1976 | MR | MR | Zbl
[13] Helms L.L., Potential theory, Springer, Dordrecht, 2009 | Zbl
[14] Hörmander L., Notions of convexity, Birkhäuser, Basel, 1994 | MR | Zbl
[15] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka, Moscow, 1968 (in Russian) | MR
[16] G. V. Kuz'mina, Moduli of Families of Curves and Quadratic Differentials, Tr. Mat. Inst. Steklova, 139, Nauka, Leningrad, 1980 | Zbl
[17] Proc. Steklov Inst. Math., 139 (1982) | Zbl
[18] N. S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972 | MR | MR | Zbl
[19] E. A. Perevoznikova and E. A. Rakhmanov, Variation of equilibrium energy and the $S$-property of compact sets of minimum capacity, Preprint, Moscow, 1994
[20] Ransford T., Potential theory in the complex plane, LMS Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[21] Rakhmanov E.A., “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 ; arXiv: 1112.5713 [math.CV] | DOI | MR | Zbl
[22] Skinner B., Logarithmic potential theory on Riemann surfaces, PhD Thesis, Calif. Inst. Technol., Pasadena, 2015 ; Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, Izd-vo inostr. lit., M., 1960 | MR
[23] G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading, MA, 1957 ; Stein I.M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl
[24] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl
[25] Saff E.B., Totik V., Logarithmic potentials with external fields, Grundl. Math. Wiss., 316, Springer, Berlin, 1997 | MR | Zbl
[26] Tsuji M., Potential theory in modern function theory, Maruzen Co., Tokyo, 1959 | MR | Zbl