Equilibrium Measures on a Compact Riemann Surface
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 313-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various notions of energy are introduced for charges on a compact Riemann surface that generalize the corresponding notions of logarithmic potential theory in the complex plane. Standard properties of the corresponding equilibrium measures are proved both in the case of measures supported on a given compact set and in the case of measures with arbitrary supports.
@article{TRSPY_2019_306_a23,
     author = {E. M. Chirka},
     title = {Equilibrium {Measures} on a {Compact} {Riemann} {Surface}},
     journal = {Informatics and Automation},
     pages = {313--351},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a23/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Equilibrium Measures on a Compact Riemann Surface
JO  - Informatics and Automation
PY  - 2019
SP  - 313
EP  - 351
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a23/
LA  - ru
ID  - TRSPY_2019_306_a23
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Equilibrium Measures on a Compact Riemann Surface
%J Informatics and Automation
%D 2019
%P 313-351
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a23/
%G ru
%F TRSPY_2019_306_a23
E. M. Chirka. Equilibrium Measures on a Compact Riemann Surface. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 313-351. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a23/

[1] M. Brelot, Éléments de la théorie classique du potentiel, Centre Doc. Univ., Paris, 1961 ; Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR

[2] L. Carleson, Selected Problems on Exceptional Sets, D. Van Nostrand Co., Princeton, NJ, 1967 | MR | Zbl

[3] E. M. Chirka, Riemann Surfaces, Lekts. Kursy Nauchno-Obrazov. Tsentra, 1, Steklov Math. Inst., Moscow, 2006 | DOI | Zbl

[4] E. M. Chirka, “Harnack inequalities, Kobayashi distances and holomorphic motions”, Proc. Steklov Inst. Math., 279 (2012), 194–206 | DOI | DOI | MR | Zbl

[5] E. M. Chirka, “Potentials on a compact Riemann surface”, Proc. Steklov Inst. Math., 301 (2018), 272–303 | DOI | DOI | MR | Zbl

[6] Doob J.L., Classical potential theory and its probabilistic counterpart, Grundl. Math. Wiss., 262, Springer, New York, 1984 | MR | Zbl

[7] S. I. Fedorov, “On a variational problem of Chebotarev in the theory of capacity of plane sets and covering theorems for univalent conformal mappings”, Math. USSR, Sb., 52:1 (1985), 115–133 | DOI | MR | Zbl | Zbl

[8] Forster O., Riemannsche Flächen, Springer, Berlin, 1977 ; Forster O., Rimanovy poverkhnosti, Mir, M., 1980; O. Forster, Riemannsche Flächen, Springer, Berlin, 1977 ; Lectures on Riemann Surfaces, Springer, New York, 1981 | MR | Zbl | MR | Zbl

[9] Frostman O., Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddelanden Lunds Univ. Mat. Sem., 3, Gleerup, Lund, 1935

[10] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Nauka, Moscow, 1966 | DOI | MR | MR | Zbl | Zbl

[11] Transl. Math. Monogr., 26, Am. Math. Soc., Providence, RI, 1969 ; Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980 | DOI | MR | MR | Zbl | Zbl | MR

[12] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic, London, 1976 | MR | MR | Zbl

[13] Helms L.L., Potential theory, Springer, Dordrecht, 2009 | Zbl

[14] Hörmander L., Notions of convexity, Birkhäuser, Basel, 1994 | MR | Zbl

[15] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka, Moscow, 1968 (in Russian) | MR

[16] G. V. Kuz'mina, Moduli of Families of Curves and Quadratic Differentials, Tr. Mat. Inst. Steklova, 139, Nauka, Leningrad, 1980 | Zbl

[17] Proc. Steklov Inst. Math., 139 (1982) | Zbl

[18] N. S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972 | MR | MR | Zbl

[19] E. A. Perevoznikova and E. A. Rakhmanov, Variation of equilibrium energy and the $S$-property of compact sets of minimum capacity, Preprint, Moscow, 1994

[20] Ransford T., Potential theory in the complex plane, LMS Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[21] Rakhmanov E.A., “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 ; arXiv: 1112.5713 [math.CV] | DOI | MR | Zbl

[22] Skinner B., Logarithmic potential theory on Riemann surfaces, PhD Thesis, Calif. Inst. Technol., Pasadena, 2015 ; Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, Izd-vo inostr. lit., M., 1960 | MR

[23] G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading, MA, 1957 ; Stein I.M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[24] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl

[25] Saff E.B., Totik V., Logarithmic potentials with external fields, Grundl. Math. Wiss., 316, Springer, Berlin, 1997 | MR | Zbl

[26] Tsuji M., Potential theory in modern function theory, Maruzen Co., Tokyo, 1959 | MR | Zbl