New Bases in the Space of Square Integrable Functions on the Field of $p$-Adic Numbers and Their Applications
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 28-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we summarize the results obtained in some of our recent studies in the form of a series of theorems. We present new real bases of functions in $L^2(B_r)$ that are eigenfunctions of the $p$-adic pseudodifferential Vladimirov operator defined on a compact set $B_r\subset \mathbb Q_p$ of the field of $p$-adic numbers $\mathbb Q_p$ and on the whole $\mathbb Q_p$. We demonstrate a relationship between the constructed basis of functions in $L^2(\mathbb Q_p)$ and the basis of $p$-adic wavelets in $L^2(\mathbb Q_p)$. A real orthonormal basis in the space $L^2(\mathbb Q_p,u(x)\,d_px)$ of square integrable functions on $\mathbb Q_p$ with respect to the measure $u(x)\,d_px$ is described. The functions of this basis are eigenfunctions of a pseudodifferential operator of general form with kernel depending on the $p$-adic norm and with measure $u(x)\,d_px$. As an application of this basis, we present a method for describing stationary Markov processes on the class of ultrametric spaces $\mathbb U$ that are isomorphic and isometric to a measurable subset of the field of $p$-adic numbers $\mathbb Q_p$ of nonzero measure. This method allows one to reduce the study of such processes to the study of similar processes on $\mathbb Q_p$ and thus to apply conventional methods of $p$-adic mathematical physics in order to calculate their characteristics. As another application, we present a method for finding a general solution to the equation of $p$-adic random walk with the Vladimirov operator with general modified measure $u(|x|_p)\,d_px$ and reaction source in $\mathbb {Z}_p$.
@article{TRSPY_2019_306_a2,
     author = {A. Kh. Bikulov and A. P. Zubarev},
     title = {New {Bases} in the {Space} of {Square} {Integrable} {Functions} on the {Field} of $p${-Adic} {Numbers} and {Their} {Applications}},
     journal = {Informatics and Automation},
     pages = {28--40},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a2/}
}
TY  - JOUR
AU  - A. Kh. Bikulov
AU  - A. P. Zubarev
TI  - New Bases in the Space of Square Integrable Functions on the Field of $p$-Adic Numbers and Their Applications
JO  - Informatics and Automation
PY  - 2019
SP  - 28
EP  - 40
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a2/
LA  - ru
ID  - TRSPY_2019_306_a2
ER  - 
%0 Journal Article
%A A. Kh. Bikulov
%A A. P. Zubarev
%T New Bases in the Space of Square Integrable Functions on the Field of $p$-Adic Numbers and Their Applications
%J Informatics and Automation
%D 2019
%P 28-40
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a2/
%G ru
%F TRSPY_2019_306_a2
A. Kh. Bikulov; A. P. Zubarev. New Bases in the Space of Square Integrable Functions on the Field of $p$-Adic Numbers and Their Applications. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 28-40. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a2/

[1] Avetisov V.A., Bikulov A.H., Kozyrev S.V., Osipov V.A., “$p$-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A: Math. Gen., 35:2 (2002), 177–189 | DOI | MR | Zbl

[2] Avetisov V.A., Bikulov A.Kh., Osipov V.A., “$p$-Adic description of characteristic relaxation in complex systems”, J. Phys. A: Math. Gen., 36:15 (2003), 4239–4246 | DOI | MR | Zbl

[3] Avetisov V.A., Bikulov A.Kh., Zubarev A.P., “First passage time distribution and the number of returns for ultrametric random walks”, J. Phys. A: Math. Theor., 42:8 (2009), 085003 | DOI | MR | Zbl

[4] V. A. Avetisov, A. Kh. Bikulov, and A. P. Zubarev, “Mathematical modeling of molecular ‘nano-machines’”, Vestn. Samar. Gos. Tekh. Univ., Fiz.-Mat. Nauki, 2011, no. 1, 9–15 | DOI

[5] V. A. Avetisov, A. Kh. Bikulov, and A. P. Zubarev, “Ultrametric random walk and dynamics of protein molecules”, Proc. Steklov Inst. Math., 285 (2014), 3–25 | DOI | DOI | MR | Zbl

[6] Bikulov A.Kh., Zubarev A.P., “Application of $p$-adic analysis methods in describing Markov processes on ultrametric spaces isometrically embedded into $\mathbb Q_p$”, $p$-Adic Numbers Ultrametric Anal. Appl., 7:2 (2015), 121–132 | DOI | MR | Zbl

[7] A. Kh. Bikulov and A. P. Zubarev, “Complete systems of eigenfunctions of the Vladimirov operator in $L^2(B_r)$ and $L^2(\mathbb Q_p)$”, Fundam. Prikl. Mat., 21:3 (2016), 39–56 | MR

[8] Bikulov A.Kh., Zubarev A.P., “Model of $p$-adic random walk in a potential”, $p$-Adic Numbers Ultrametric Anal. Appl., 10:2 (2018), 130–150 | DOI | MR | Zbl

[9] A. Kh. Bikulov, A. P. Zubarev, and L. V. Kaidalova, “Hierarchical dynamical model of financial market near the crash point and $p$-adic mathematical analysis”, Vestn. Samar. Gos. Tekh. Univ., Fiz.-Mat. Nauki, 42 (2006), 135–140 | DOI

[10] Dragovich B., Khrennikov A.Yu., Kozyrev S.V., Volovich I.V., “On $p$-adic mathematical physics”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl

[11] A. Yu. Khrennikov and V. M. Shelkovich, Modern $p$-Adic Analysis and Mathematical Physics: Theory and Applications, Fizmatlit, Moscow, 2012 (in Russian)

[12] Kochubei A.N., Pseudo-differential equations and stochastics over non-Archimedean fields, Pure Appl. Math., 244, M. Dekker, New York, 2001 | MR | Zbl

[13] S. V. Kozyrev, “Wavelet theory as $p$-adic spectral analysis”, Izv. Math., 66:2 (2002), 367–376 | DOI | DOI | MR | Zbl

[14] S. V. Kozyrev, “$p$-Adic pseudodifferential operators and $p$-adic wavelets”, Theor. Math Phys., 138:3 (2004), 322–332 | DOI | DOI | MR | Zbl

[15] S. V. Kozyrev and A. Yu. Khrennikov, “Pseudodifferential operators on ultrametric spaces and ultrametric wavelets”, Izv. Math., 69:5 (2005), 989–1003 | DOI | DOI | MR | Zbl

[16] V. S. Vladimirov, “Generalized functions over the field of $p$-adic numbers”, Russ. Math. Surv., 43:5 (1988), 19–64 | DOI | MR | Zbl

[17] V. S. Vladimirov, “On the spectrum of some pseudodifferential operators over the field of $p$-adic numbers”, Leningr. Math. J., 2:6 (1991), 1261–1278 | MR

[18] V. S. Vladimirov, “Ramified characters of idèle groups of one-class quadratic fields”, Proc. Steklov Inst. Math., 224 (1999), 107–114 | MR | Zbl

[19] Vladimirov V.S., Volovich I.V., Zelenov E.I., $p$-Adic analysis and mathematical physics, World Scientific, Singapore, 1994 | MR | Zbl