Quantum Calculus and Ideals in the Algebra of Compact Operators
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 227-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the goals of noncommutative geometry is to translate the basic notions of analysis into the language of Banach algebras. This translation is based on the quantization procedure. The arising operator calculus is called, following Connes, the quantum calculus. In this paper we give several assertions from this calculus concerning the interpretation of Schatten ideals of compact operators in a Hilbert space in terms of function theory. The main focus is on the case of Hilbert–Schmidt operators.
@article{TRSPY_2019_306_a17,
     author = {A. G. Sergeev},
     title = {Quantum {Calculus} and {Ideals} in the {Algebra} of {Compact} {Operators}},
     journal = {Informatics and Automation},
     pages = {227--234},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a17/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Quantum Calculus and Ideals in the Algebra of Compact Operators
JO  - Informatics and Automation
PY  - 2019
SP  - 227
EP  - 234
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a17/
LA  - ru
ID  - TRSPY_2019_306_a17
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Quantum Calculus and Ideals in the Algebra of Compact Operators
%J Informatics and Automation
%D 2019
%P 227-234
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a17/
%G ru
%F TRSPY_2019_306_a17
A. G. Sergeev. Quantum Calculus and Ideals in the Algebra of Compact Operators. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 227-234. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a17/

[1] Ahlfors L.V., Conformal invariants: Topics in geometric function theory, McGraw-Hill, New York, 1973 | MR | Zbl

[2] Connes A., Noncommutative geometry, Acad. Press, San Diego, CA, 1994 ; Peller V.V., Operatory Gankelya i ikh prilozheniya, Regulyarnaya i khaoticheskaya dinamika; In-t kompyut. issled., M.; Izhevsk, 2005 | MR | Zbl

[3] V. V. Peller, Hankel Operators and Their Applications, Springer, New York, 2003 | MR | Zbl