Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_306_a16, author = {Yu. N. Orlov and V. Zh. Sakbaev and O. G. Smolyanov}, title = {Feynman {Formulas} and the {Law} of {Large} {Numbers} for {Random} {One-Parameter} {Semigroups}}, journal = {Informatics and Automation}, pages = {210--226}, publisher = {mathdoc}, volume = {306}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a16/} }
TY - JOUR AU - Yu. N. Orlov AU - V. Zh. Sakbaev AU - O. G. Smolyanov TI - Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups JO - Informatics and Automation PY - 2019 SP - 210 EP - 226 VL - 306 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a16/ LA - ru ID - TRSPY_2019_306_a16 ER -
%0 Journal Article %A Yu. N. Orlov %A V. Zh. Sakbaev %A O. G. Smolyanov %T Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups %J Informatics and Automation %D 2019 %P 210-226 %V 306 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a16/ %G ru %F TRSPY_2019_306_a16
Yu. N. Orlov; V. Zh. Sakbaev; O. G. Smolyanov. Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 210-226. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a16/
[1] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl
[2] M. L. Blank, Stability and Localization in Chaotic Dynamics, MTsNMO, Moscow, 2001 (in Russian)
[3] V. I. Bogachev, Foundations of Measure Theory, v. 1, Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2006 | Zbl
[4] Measure Theory, v. 1, Springer, Berlin, 2007 | Zbl
[5] V. I. Bogachev and O. G. Smolyanov, Real and Functional Analysis, Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2009 (in Russian)
[6] N. N. Bogolyubov, On Some Statistical Methods in Mathematical Physics, Akad. Nauk Ukr. SSR, Kiev, 1945 (in Russian) | MR
[7] Borisov L.A., Orlov Yu.N., Sakbaev V.J., “Chernoff equivalence for shift operators, generating coherent states in quantum optics”, Lobachevskii J. Math., 39:6 (2018), 742–746 | DOI | MR | Zbl
[8] Borisov L.A., Orlov Yu.N., Sakbaev V.Zh., “Feynman averaging of semigroups generated by Schrödinger operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21:2 (2018), 1850010 | DOI | MR | Zbl
[9] Chernoff P.R., “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl
[10] L. S. Efremova and V. Zh. Sakbaev, “Notion of blowup of the solution set of differential equations and averaging of random semigroups”, Theor. Math. Phys., 185:2 (2015), 1582–1598 | DOI | DOI | MR | Zbl
[11] Engel K.-J., Nagel R., One-parameter semigroups for linear evolution equations, Springer, Berlin, 2000 | MR | Zbl
[12] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, J. Wiley and Sons, New York, 1971 | MR | Zbl
[13] R. I. Grigorchuk, “Ergodic theorems for actions of free groups and free semigroups”, Math. Notes, 65:5 (1999), 654–657 | DOI | DOI | MR | Zbl
[14] A. V. Letchikov, “Conditional limit theorem for products of random matrices”, Sb. Math., 186:3 (1995), 371–389 | DOI | MR | Zbl
[15] M. L. Mehta, Random Matrices, Elsevier, Amsterdam, 2004 | MR | Zbl
[16] Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Feynman formulas as a method of averaging random Hamiltonians”, Proc. Steklov Inst. Math., 285 (2014), 222–232 | DOI | DOI | MR | Zbl
[17] Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158 | DOI | DOI | MR | Zbl
[18] V. I. Oseledets, “Markov chains, skew products and ergodic theorems for ‘general’ dynamic systems”, Theory Probab. Appl., 10:3 (1965), 499–504 | DOI | MR | Zbl
[19] L. A. Pastur, “Spectral theory of random self-adjoint operators”, Probability Theory. Mathematical Statistics. Theoretical Cybernetics, v. 25, Itogi Nauki Tekh., VINITI, Moscow, 1987, 3–67 | DOI | MR | Zbl
[20] J. Sov. Math., 46:4 (1989), 1979–2021 | DOI | MR | Zbl
[21] V. Yu. Protasov, “Invariant functions for the Lyapunov exponents of random matrices”, Sb. Math., 202:1 (2011), 101–126 | DOI | DOI | MR | Zbl
[22] V. Zh. Sakbaev, “Cauchy problem for degenerating linear differential equations and averaging of approximating regularizations”, J. Math. Sci., 213:3 (2016), 287–459 | DOI | MR | Zbl
[23] V. Zh. Sakbaev, “On the law of large numbers for compositions of independent random semigroups”, Russ. Math., 60:10 (2016), 72–76 | DOI | MR | Zbl
[24] V. Zh. Sakbaev, “On the law of the large numbers for the composition of independent random operators and random semigroups”, Tr. Mosk. Fiz.-Tekh. Inst., 8:1 (2016), 140–152 | MR
[25] V. Zh. Sakbaev, “Averaging of random walks and shift-invariant measures on a Hilbert space”, Theor. Math. Phys., 191:3 (2017), 886–909 | DOI | DOI | MR | Zbl
[26] Sakbaev V.Zh., “Averaging of random flows of linear and nonlinear maps”, J. Phys.: Conf. Ser., 990 (2018), 012012 | DOI | MR
[27] A. V. Skorokhod, “Products of independent random operators”, Russ. Math. Surv., 38:4 (1983), 291–318 | DOI | MR | Zbl
[28] O. G. Smolyanov and E. T. Shavgulidze, Functional Integrals, URSS, Moscow, 2015 (in Russian)
[29] Smolyanov O.G., Tokarev A.G., Truman A., “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl
[30] Smolyanov O.G., von Weizsäcker H., Wittich O., “Chernoff's theorem and discrete time approximations of Brownian motion on manifolds”, Potential Anal., 26 (2007), 1–29 | DOI | MR | Zbl
[31] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970 | MR | MR | Zbl
[32] V. N. Tutubalin, “Some theorems of the type of the strong law of large numbers”, Theory Probab. Appl., 14:2 (1969), 313–319 | DOI | MR | Zbl
[33] K. Yosida, Functional Analysis, Springer, Berlin, 1965 | MR | Zbl