A Generalization of the Yang--Mills Equations
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 170-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the Yang–Mills equations is proposed. It is shown that any solution of the Yang–Mills equations (in the Lorentz gauge) is also a solution of the new generalized equation. It is also shown that the generalized equation has solutions that do not satisfy the Yang–Mills equations.
Keywords: Yang–Mills equations, differential forms, Maxwell equations, gauge group, genforms, symmetric hyperbolic systems of equations.
@article{TRSPY_2019_306_a14,
     author = {N. G. Marchuk},
     title = {A {Generalization} of the {Yang--Mills} {Equations}},
     journal = {Informatics and Automation},
     pages = {170--191},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a14/}
}
TY  - JOUR
AU  - N. G. Marchuk
TI  - A Generalization of the Yang--Mills Equations
JO  - Informatics and Automation
PY  - 2019
SP  - 170
EP  - 191
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a14/
LA  - ru
ID  - TRSPY_2019_306_a14
ER  - 
%0 Journal Article
%A N. G. Marchuk
%T A Generalization of the Yang--Mills Equations
%J Informatics and Automation
%D 2019
%P 170-191
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a14/
%G ru
%F TRSPY_2019_306_a14
N. G. Marchuk. A Generalization of the Yang--Mills Equations. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 170-191. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a14/

[1] Atiyah M.F., Vector fields on manifolds, Arbeitsgemeinschaft Forsch. Nordrhein-Westfalen, 200, Westdeutscher Verl., Köln, 1970 | MR | Zbl

[2] Benn I.M., Tucker R.W., An introduction to spinors and geometry with applications in physics, Adam Hilger, Bristol, 1987 | MR

[3] H. Cartan, Calcul différentiel, Hermann, Paris, 1967 ; Formes différentielles. Applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces, Hermann, Paris, 1967 | MR

[4] A. A. Dezin, “Boundary value problems for some symmetric linear first-order systems”, Mat. Sb., 49:4 (1959), 459–484 | Zbl

[5] A. A. Dezin, Invariant Differential Operators and Boundary Value Problems, Tr. Mat. Inst. Steklova, 68, Akad. Nauk SSSR, Moscow, 1962 | MR

[6] Friedrichs K.O., “Symmetric hyperbolic linear differential equations”, Commun. Pure Appl. Math., 7:2 (1954), 345–392 | DOI | MR | Zbl

[7] S. K. Godunov, Equations of Mathematical Physics, Nauka, Moscow, 1979 (in Russian) | MR

[8] Ivanenko D., Landau L., “Zur Theorie des magnetischen Electrons”, Z. Phys., 48 (1928), 340–348 | DOI

[9] Kähler E., “Der innere Differentialkalkül”, Rend. Mat. Appl. V. Ser., 21 (1962), 425–523 | MR

[10] N. G. Marchuk, “On a field equation generating a new class of particular solutions to the Yang–Mills equations”, Proc. Steklov Inst. Math., 285 (2014), 197–210 | DOI | DOI | MR | Zbl

[11] N. G. Marchuk, Field Theory Equations and Clifford Algebras, Lenand, Moscow, 2018 (in Russian)

[12] Marchuk N.G., Shirokov D.S., “General solutions of one class of field equations”, Rep. Math. Phys., 78:3 (2016), 305–326 ; arXiv: 1406.6665 [math-ph] | DOI | MR | Zbl

[13] S. Mizohata, The Theory of Partial Differential Equations, Cambridge Univ. Press, London, 1973 | MR | Zbl

[14] S. P. Novikov and I. A. Taimanov, Modern Geometric Structures and Fields, MTsNMO, Moscow, 2005 | DOI | MR | Zbl

[15] Grad. Stud. Math., 71, Am. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl

[16] Yu. N. Obukhov and S. N. Solodukhin, “Reduction of the Dirac equation and its connection with the Ivanenko–Landau–Kähler equation”, Theor. Math. Phys., 94:2 (1993), 198–210 | DOI | MR | MR | Zbl

[17] P. K. Rashevskii, Riemannian Geometry and Tensor Analysis, Nauka, Moscow, 1967 (in Russian) | MR | MR

[18] Shirokov D., “Covariantly constant solutions of the Yang–Mills equations”, Adv. Appl. Clifford Algebr., 28 (2018), 53 ; arXiv: 1709.07836 [math-ph] | DOI | MR | Zbl

[19] K. V. Stepan'yants, Classical Field Theory, Fizmatlit, Moscow, 2009 (in Russian)