A Generalization of the Yang--Mills Equations
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 170-191

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the Yang–Mills equations is proposed. It is shown that any solution of the Yang–Mills equations (in the Lorentz gauge) is also a solution of the new generalized equation. It is also shown that the generalized equation has solutions that do not satisfy the Yang–Mills equations.
Keywords: Yang–Mills equations, differential forms, Maxwell equations, gauge group, genforms, symmetric hyperbolic systems of equations.
@article{TRSPY_2019_306_a14,
     author = {N. G. Marchuk},
     title = {A {Generalization} of the {Yang--Mills} {Equations}},
     journal = {Informatics and Automation},
     pages = {170--191},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a14/}
}
TY  - JOUR
AU  - N. G. Marchuk
TI  - A Generalization of the Yang--Mills Equations
JO  - Informatics and Automation
PY  - 2019
SP  - 170
EP  - 191
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a14/
LA  - ru
ID  - TRSPY_2019_306_a14
ER  - 
%0 Journal Article
%A N. G. Marchuk
%T A Generalization of the Yang--Mills Equations
%J Informatics and Automation
%D 2019
%P 170-191
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a14/
%G ru
%F TRSPY_2019_306_a14
N. G. Marchuk. A Generalization of the Yang--Mills Equations. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 170-191. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a14/