Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_305_a9, author = {A. V. Malyutin}, title = {The {Rotation} {Number} {Integer} {Quantization} {Effect} in {Braid} {Groups}}, journal = {Informatics and Automation}, pages = {197--210}, publisher = {mathdoc}, volume = {305}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a9/} }
A. V. Malyutin. The Rotation Number Integer Quantization Effect in Braid Groups. Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 197-210. http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a9/
[1] V. I. Arnold, Additional Chapters of the Theory of Ordinary Differential Equations, Nauka, Moscow, 1978
[2] Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed., Grundl. Math. Wiss., 250, Springer, New York, 1988
[3] Artin E., “Theory of braids”, Ann. Math. Ser. 2, 48:1 (1947), 101–126 | DOI | Zbl
[4] Baldwin J.A., Etnyre J.B., “Admissible transverse surgery does not preserve tightness”, Math. Ann., 357:2 (2013), 441–468 | DOI | Zbl
[5] Birman J.S., Braids, links, and mapping class groups, Ann. Math. Stud., 82, Princeton Univ. Press, Princeton, NJ, 1974
[6] Birman J.S., Gebhardt V., González-Meneses J., “Conjugacy in Garside groups. III: Periodic braids”, J. Algebra, 316:2 (2007), 746–776 | DOI | Zbl
[7] Boyland Ph.L., “Bifurcations of circle maps: Arnol'd tongues, bistability and rotation intervals”, Commun. Math. Phys., 106 (1986), 353–381 | DOI | Zbl
[8] Brin M.G., “The algebra of strand splitting. I: A braided version of Thompson's group $V$”, J. Group Theory, 10:6 (2007), 757–788 | DOI | Zbl
[9] Buchstaber V.M., Glutsyuk A.A., “On determinants of modified Bessel functions and entire solutions of double confluent Heun equations”, Nonlinearity, 29:12 (2016), 3857–3870 | DOI | Zbl
[10] V. M. Buchstaber and A. A. Glutsyuk, “On monodromy eigenfunctions of Heun equations and boundaries of phase-lock areas in a model of overdamped Josephson effect”, Proc. Steklov Inst. Math., 297, 2017, 50–89 | DOI | DOI | Zbl
[11] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychniy, “Electrodynamic properties of a Josephson junction biased with a sequence of delta-function pulses”, J. Exp. Theor. Phys., 93:6 (2001), 1280–1287 | DOI
[12] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi, “On properties of the differential equation describing the dynamics of an overdamped Josephson junction”, Russ. Math. Surv., 59:2 (2004), 377–378 | DOI | DOI
[13] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi, “Features of the dynamics of a Josephson junction biased by a sinusoidal microwave current”, J. Commun. Technol. Electron., 51:6 (2006), 713–718 | DOI
[14] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychniy, “Rotation number quantization effect”, Theor. Math. Phys., 162:2 (2010), 211–221 | DOI | DOI | Zbl
[15] V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi, “A system on a torus modelling the dynamics of a Josephson junction”, Russ. Math. Surv., 67:1 (2012), 178–180 | DOI | DOI | Zbl
[16] V. M. Buchstaber and S. I. Tertychniy, “Explicit solution family for the equation of the resistively shunted Josephson junction model”, Theor. Math. Phys., 176:2 (2013), 965–986 | DOI | DOI | Zbl
[17] V. M. Buchstaber and S. I. Tertychnyi, “Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction”, Theor. Math. Phys., 182:3 (2015), 329–355 | DOI | DOI | Zbl
[18] V. M. Bukhshtaber and S. I. Tertychnyi, “On a remarkable sequence of Bessel matrices”, Math. Notes, 98:5 (2015), 714–724 | DOI | DOI | Zbl
[19] V. M. Buchstaber and S. I. Tertychnyi, “Automorphisms of the solution spaces of special double-confluent Heun equations”, Funct. Anal. Appl., 50:3 (2016), 176–192 | DOI | DOI | Zbl
[20] Calegari D., “Circular groups, planar groups, and the Euler class”, Proceedings of the Casson Fest, Geom. Topol. Monogr., 7, Geom. Topol. Publ., Coventry, 2004, 431–491 | DOI | Zbl
[21] Calegari D., Walker A., “Ziggurats and rotation numbers”, J. Mod. Dyn., 5:4 (2011), 711–746 | Zbl
[22] Casson A.J., Bleiler S.A., Automorphisms of surfaces after Nielsen and Thurston, LMS Stud. Texts, 9, Cambridge Univ. Press, Cambridge, 1988 | Zbl
[23] Dehornoy P., “Braid groups and left distributive operations”, Trans. Amer. Math. Soc., 345:1 (1994), 115–150 | DOI | Zbl
[24] Dehornoy P., “Geometric presentations for Thompson's groups”, J. Pure Appl. Algebra, 203:1–3 (2005), 1–44 | DOI | Zbl
[25] Dehornoy P., “The group of parenthesized braids”, Adv. Math., 205:2 (2006), 354–409 | DOI | Zbl
[26] Dehornoy P., Dynnikov I., Rolfsen D., Wiest B., Why are braids orderable?, Panor. Synth., 14, Soc. math. France, Paris, 2002 | Zbl
[27] I. A. Dynnikov and V. A. Shastin, “On independence of some pseudocharacters on braid groups”, St. Petersburg Math. J., 24:6 (2013), 863–876 | DOI | Zbl
[28] Epstein D.B.A., Cannon J.W., Holt D.F., Levy S.V.F., Paterson M.S., Thurston W.P., “Braid groups”, Word processing in groups, Ch. 9, Jones and Bartlett Publ., Boston, MA, 1992, 181–209
[29] Etnyre J.B., Van Horn-Morris J., “Monoids in the mapping class group”, Interactions between low-dimensional topology and mapping class groups, Proc. Conf. (Bonn, July, 2013), Geom. Topol. Monogr., 19, Geom. Topol. Publ., Coventry, 2015, 319–365 | DOI | Zbl
[30] Feller P., Hubbard D., “Braids with as many full twists as strands realize the braid index”, J. Topology, 12:4 (2019), 1069–1092 ; arXiv: 1708.04998 [math.GT] | DOI
[31] Fenn R., Greene M.T., Rolfsen D., Rourke C., Wiest B., “Ordering the braid groups”, Pac. J. Math., 191:1 (1999), 49–74 | DOI | Zbl
[32] Franks J., “Rotation numbers and instability sets”, Bull. Amer. Math. Soc. New Ser., 40:3 (2003), 263–279 | DOI | Zbl
[33] Funar L., Kapoudjian C., “On a universal mapping class group of genus zero”, Geom. Funct. Anal., 14:5 (2004), 965–1012 | DOI | Zbl
[34] Funar L., Kapoudjian C., “The braided Ptolemy–Thompson group is finitely presented”, Geom. Topol., 12:1 (2008), 475–530 | DOI | Zbl
[35] Gabai D., “Problems in foliations and laminations”, Geometric topology, Georgia Int. Topol. Conf. (Athens, GA, 1993), AMS/IP Stud. Adv. Math., 2, Pt. 2, Amer. Math. Soc., Providence, RI, 1997, 1–33 | Zbl
[36] Gabai D., Oertel U., “Essential laminations in 3-manifolds”, Ann. Math. Ser. 2, 130:1 (1989), 41–73 | DOI | Zbl
[37] Ghys É., “Groups acting on the circle”, Enseign. Math. Sér. II, 47:3–4 (2001), 329–407 | Zbl
[38] A. A. Glutsyuk, V. A. Kleptsyn, D. A. Filimonov, and I. V. Schurov, “On the adjacency quantization in an equation modeling the Josephson effect”, Funct. Anal. Appl., 48:4 (2014), 272–285 | DOI | DOI | Zbl
[39] Hedden M., Mark T.E., “Floer homology and fractional Dehn twists”, Adv. Math., 324 (2018), 1–39 | DOI | Zbl
[40] Honda K., Kazez W.H., Matić G., “Right-veering diffeomorphisms of compact surfaces with boundary”, Invent. math., 169:2 (2007), 427–449 | DOI | Zbl
[41] Honda K., Kazez W.H., Matić G., “Right-veering diffeomorphisms of compact surfaces with boundary. II”, Geom. Topol., 12:4 (2008), 2057–2094 | DOI | Zbl
[42] Ito T., Kawamuro K., “Essential open book foliations and fractional Dehn twist coefficient”, Geom. dedicata, 187 (2017), 17–67 | DOI | Zbl
[43] Ito T., Kawamuro K., On the fractional Dehn twist coefficients of branched coverings, E-print, 2018, arXiv: 1807.04398 [math.GT]
[44] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995 | Zbl
[45] Kazez W., Roberts R., “Fractional Dehn twists in knot theory and contact topology”, Algebr. Geom. Topol., 13:6 (2013), 3603–3637 | DOI | Zbl
[46] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Interscience, New York, 1966 | Zbl
[47] A. V. Malyutin, “Orderings on braid groups, operations on closed braids, and confirmation of Menasco's conjectures”, J. Math. Sci., 113:6 (2003), 822–826 | DOI | Zbl
[48] A. V. Malyutin, “Twist number of (closed) braids”, St. Petersburg Math. J., 16:5 (2005), 791–813 | DOI
[49] A. V. Malyutin, “Classification of the group actions on the real line and circle”, St. Petersburg Math. J., 19:2 (2008), 279–296 | DOI | Zbl
[50] A. V. Malyutin, “Criteria of prime links in terms of pseudo-characters”, J. Math. Sci., 161:3 (2009), 437–442 | DOI | Zbl
[51] A. V. Malyutin, “Pseudocharacters of braid groups and prime links”, St. Petersburg Math. J., 21:2 (2010), 245–259 | DOI | Zbl
[52] A. V. Malyutin, “Operators in the spaces of pseudocharacters of braid groups”, St. Petersburg Math. J., 21:2 (2010), 261–280 | DOI | Zbl
[53] A. V. Malyutin, “Transformation formulas for pseudo-characters of braid groups”, J. Math. Sci., 175:5 (2011), 574–585 | DOI | Zbl
[54] A. V. Malyutin, “Quasimorphisms, random walks, and transient subsets in countable groups”, J. Math. Sci., 181:6 (2012), 871–885 ; Zap. Nauchn. Semin. POMI, 390 (2011), 210–236 | DOI | Zbl
[55] A. V. Malyutin and N. Yu. Netsvetaev, “Dehornoy's ordering on the braid group and braid moves”, St. Petersburg Math. J., 15:3 (2004), 437–448 | DOI | Zbl
[56] Plamenevskaya O., “Braid monodromy, orderings and transverse invariants”, Algebr. Geom. Topol., 18:6 (2018), 3691–3718 | DOI
[57] Poincaré H., “Mémoire sur les courbes définies par une équation différentielle”, J. math., 7 (1881), 375–422; 8 (1882), 251–296; ØE uvres de Henri Poincaré, T. 1, Gauthier-Villars, Paris, 1928, 3–84
[58] “Problems in low-dimensional topology”, Geometric topology, Georgia Int. Topol. Conf. (Athens, GA, 1993), AMS/IP Stud. Adv. Math., 2, Pt. 2, eds. ed. by R. Kirby, Amer. Math. Soc., Providence, RI, 1997, 35–473 | Zbl
[59] Roberts R., “Taut foliations in punctured surface bundles. I”, Proc. London Math. Soc. Ser. 3, 82:3 (2001), 747–768 | DOI | Zbl
[60] Roberts R., “Taut foliations in punctured surface bundles. II”, Proc. London Math. Soc. Ser. 3, 83:2 (2001), 443–471 | DOI | Zbl
[61] Short H., Wiest B., “Orderings of mapping class groups after Thurston”, Enseign. Math. Sér. II, 46:3–4 (2000), 279–312 | Zbl
[62] A. M. Vershik and A. V. Malyutin, “Boundaries of braid groups and the Markov–Ivanovsky normal form”, Izv. Math., 72:6 (2008), 1161–1186 | DOI | DOI | Zbl
[63] Vershinin V., “Around braids”, Combinatorial and toric homotopy, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singapore, 35, World Scientific, Hackensack, NJ, 2018, 179–228 | Zbl