Generic Torus Orbit Closures in Flag Bott Manifolds
Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 162-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

The generic torus orbit closure in a flag Bott manifold is shown to be a non-singular toric variety, and its fan structure is explicitly calculated.
Keywords: flag Bott tower, flag Bott manifold, GKM theory, toric manifold.
@article{TRSPY_2019_305_a7,
     author = {Eunjeong Lee and Dong Youp Suh},
     title = {Generic {Torus} {Orbit} {Closures} in {Flag} {Bott} {Manifolds}},
     journal = {Informatics and Automation},
     pages = {162--173},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a7/}
}
TY  - JOUR
AU  - Eunjeong Lee
AU  - Dong Youp Suh
TI  - Generic Torus Orbit Closures in Flag Bott Manifolds
JO  - Informatics and Automation
PY  - 2019
SP  - 162
EP  - 173
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a7/
LA  - ru
ID  - TRSPY_2019_305_a7
ER  - 
%0 Journal Article
%A Eunjeong Lee
%A Dong Youp Suh
%T Generic Torus Orbit Closures in Flag Bott Manifolds
%J Informatics and Automation
%D 2019
%P 162-173
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a7/
%G ru
%F TRSPY_2019_305_a7
Eunjeong Lee; Dong Youp Suh. Generic Torus Orbit Closures in Flag Bott Manifolds. Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 162-173. http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a7/

[1] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Grad. Texts Math., 82, Springer, New York, 1982 | DOI | Zbl

[2] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | Zbl

[3] Buchstaber V.M., Terzić S., Toric topology of the complex Grassmann manifolds, E-print, 2018, arXiv: 1802.06449v2 [math.AT]

[4] Carrell J.B., Kurth A., “Normality of torus orbit closures in $G/P$”, J. Algebra, 233:1 (2000), 122–134 | DOI | Zbl

[5] Cox D.A., Little J.B., Schenck H.K., Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | DOI | Zbl

[6] Dabrowski R., “On normality of the closure of a generic torus orbit in $G/P$”, Pac. J. Math., 172:2 (1996), 321–330 | DOI | Zbl

[7] Ewald G., Combinatorial convexity and algebraic geometry, Grad. Texts Math., 168, Springer, New York, 1996 | DOI | Zbl

[8] Flaschka H., Haine L., “Torus orbits in $G/P$”, Pac. J. Math., 149:2 (1991), 251–292 | DOI | Zbl

[9] Gelfand I.M., Goresky R.M., MacPherson R.D., Serganova V.V., “Combinatorial geometries, convex polyhedra, and Schubert cells”, Adv. Math., 63 (1987), 301–316 | DOI | Zbl

[10] I. M. Gel'fand and V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russ. Math. Surv., 42:2 (1987), 133–168 | DOI | Zbl | Zbl

[11] Grossberg M., Karshon Y., “Bott towers, complete integrability, and the extended character of representations”, Duke Math. J., 76:1 (1994), 23–58 | DOI | Zbl

[12] A. A. Klyachko, “Orbits of a maximal torus on a flag space”, Funct. Anal. Appl., 19:1 (1985), 65–66 | DOI | Zbl

[13] A. A. Klyachko, “Toric varieties and flag varieties”, Proc. Steklov Inst. Math., 208, 1995, 124–145 | Zbl

[14] Kuroki S., Lee E., Song J., Suh D.Y., Flag Bott manifolds and the toric closure of a generic orbit associated to a generalized Bott manifold, E-print, 2017, arXiv: 1708.02082 [math.AT]

[15] Lee E., Masuda M., Generic torus orbit closures in Schubert varieties, E-print, 2018, arXiv: 1807.02904 [math.CO]

[16] Oda T., Lectures on torus embeddings and applications (Based on joint work with Katsuya Miyake), Tata Inst. Fundam. Res. Lect. Math. Phys. Math., 57, Springer, Berlin, 1978 | Zbl