Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_305_a7, author = {Eunjeong Lee and Dong Youp Suh}, title = {Generic {Torus} {Orbit} {Closures} in {Flag} {Bott} {Manifolds}}, journal = {Informatics and Automation}, pages = {162--173}, publisher = {mathdoc}, volume = {305}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a7/} }
Eunjeong Lee; Dong Youp Suh. Generic Torus Orbit Closures in Flag Bott Manifolds. Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 162-173. http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a7/
[1] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Grad. Texts Math., 82, Springer, New York, 1982 | DOI | Zbl
[2] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | Zbl
[3] Buchstaber V.M., Terzić S., Toric topology of the complex Grassmann manifolds, E-print, 2018, arXiv: 1802.06449v2 [math.AT]
[4] Carrell J.B., Kurth A., “Normality of torus orbit closures in $G/P$”, J. Algebra, 233:1 (2000), 122–134 | DOI | Zbl
[5] Cox D.A., Little J.B., Schenck H.K., Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | DOI | Zbl
[6] Dabrowski R., “On normality of the closure of a generic torus orbit in $G/P$”, Pac. J. Math., 172:2 (1996), 321–330 | DOI | Zbl
[7] Ewald G., Combinatorial convexity and algebraic geometry, Grad. Texts Math., 168, Springer, New York, 1996 | DOI | Zbl
[8] Flaschka H., Haine L., “Torus orbits in $G/P$”, Pac. J. Math., 149:2 (1991), 251–292 | DOI | Zbl
[9] Gelfand I.M., Goresky R.M., MacPherson R.D., Serganova V.V., “Combinatorial geometries, convex polyhedra, and Schubert cells”, Adv. Math., 63 (1987), 301–316 | DOI | Zbl
[10] I. M. Gel'fand and V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russ. Math. Surv., 42:2 (1987), 133–168 | DOI | Zbl | Zbl
[11] Grossberg M., Karshon Y., “Bott towers, complete integrability, and the extended character of representations”, Duke Math. J., 76:1 (1994), 23–58 | DOI | Zbl
[12] A. A. Klyachko, “Orbits of a maximal torus on a flag space”, Funct. Anal. Appl., 19:1 (1985), 65–66 | DOI | Zbl
[13] A. A. Klyachko, “Toric varieties and flag varieties”, Proc. Steklov Inst. Math., 208, 1995, 124–145 | Zbl
[14] Kuroki S., Lee E., Song J., Suh D.Y., Flag Bott manifolds and the toric closure of a generic orbit associated to a generalized Bott manifold, E-print, 2017, arXiv: 1708.02082 [math.AT]
[15] Lee E., Masuda M., Generic torus orbit closures in Schubert varieties, E-print, 2018, arXiv: 1807.02904 [math.CO]
[16] Oda T., Lectures on torus embeddings and applications (Based on joint work with Katsuya Miyake), Tata Inst. Fundam. Res. Lect. Math. Phys. Math., 57, Springer, Berlin, 1978 | Zbl