Universal Formal Group for Elliptic Genus of Level~$N$
Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 40-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

An elliptic function of level $N$ determines an elliptic genus of level $N$ as a Hirzebruch genus. It is known that any elliptic function of level $N$ is a specialization of the Krichever function that determines the Krichever genus. The Krichever function is the exponential of the universal Buchstaber formal group. In this work we give a specialization of the Buchstaber formal group such that this specialization determines formal groups corresponding to elliptic genera of level $N$. Namely, an elliptic function of level $N$ is the exponential of a formal group of the form $F(u,v) =(u^2 A(v) - v^2 A(u))/(u B(v) - v B(u))$, where $A(u),B(u)\in \mathbb C[[u]]$ are power series with complex coefficients such that $A(0)=B(0)=1$, $A''(0)=B'(0)=0$, and for $m = [(N-2)/2]$ and $n = [(N-1)/2]$ there exist parameters $(a_1,\dots ,a_m,b_1,\dots ,b_n)$ for which the relation $\prod _{j=1}^{n-1}(B(u) + b_j u)^2\cdot (B(u) + b_n u)^{N-2n} = A(u)^2 \prod _{k=1}^{m-1}(A(u) + a_k u^2)^2 \cdot (A(u) + a_m u^2)^{N-1-2m}$ holds. For the universal formal group of this form, the exponential is an elliptic function of level at most $N$. This statement is a generalization to the case $N>2$ of the well-known result that the elliptic function of level $2$ determining the elliptic Ochanine–Witten genus is the exponential of a universal formal group of the form $ F(u,v) =(u^2 - v^2)/(u B(v) - v B(u)) $, where $B(u)\in \mathbb C[[u]]$, $B(0)=1$, and $B'(0)=0$. We prove this statement for $N=3,4,5,6$. We also prove that the elliptic function of level $7$ is the exponential of a formal group of this form. Universal formal groups that correspond to elliptic genera of levels $N=5,6,7$ are obtained in this work for the first time.
Mots-clés : Hirzebruch genus, Krichever genus, formal group
Keywords: elliptic genus of level $N$, Buchstaber formal group, elliptic function of level $N$, Hirzebruch functional equation, elliptic curve.
@article{TRSPY_2019_305_a2,
     author = {E. Yu. Bunkova},
     title = {Universal {Formal} {Group} for {Elliptic} {Genus} of {Level~}$N$},
     journal = {Informatics and Automation},
     pages = {40--60},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a2/}
}
TY  - JOUR
AU  - E. Yu. Bunkova
TI  - Universal Formal Group for Elliptic Genus of Level~$N$
JO  - Informatics and Automation
PY  - 2019
SP  - 40
EP  - 60
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a2/
LA  - ru
ID  - TRSPY_2019_305_a2
ER  - 
%0 Journal Article
%A E. Yu. Bunkova
%T Universal Formal Group for Elliptic Genus of Level~$N$
%J Informatics and Automation
%D 2019
%P 40-60
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a2/
%G ru
%F TRSPY_2019_305_a2
E. Yu. Bunkova. Universal Formal Group for Elliptic Genus of Level~$N$. Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 40-60. http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a2/

[1] N. I. Akhiezer, Elements of the Theory of Elliptic Functions, Nauka, Moscow, 1970 | MR

[2] Am. Math. Soc., Providence, RI, 1990 | MR

[3] M. Bakuradze, “On the Buchstaber formal group law and some related genera”, Proc. Steklov Inst. Math., 286, 2014, 1–15 | DOI | DOI | MR | Zbl

[4] V. M. Bukhshtaber, “Functional equations associated with addition theorems for elliptic functions and two-valued algebraic groups”, Russ. Math. Surv., 45:3 (1990), 213–215 | DOI | MR | Zbl

[5] V. M. Buchstaber, “Complex cobordism and formal groups”, Russ. Math. Surv., 67:5 (2012), 891–950 | DOI | DOI | MR | Zbl

[6] V. M. Buchstaber, “Cobordisms, manifolds with torus action, and functional equations”, Proc. Steklov Inst. Math., 302, 2018, 48–87 | DOI | DOI | MR

[7] V. M. Buchstaber and E. Yu. Bunkova, “Krichever formal groups”, Funct. Anal. Appl., 45:2 (2011), 99–116 | DOI | DOI | MR | Zbl

[8] V. M. Buchstaber and E. Yu. Bunkova, “The universal formal group that defines the elliptic function of level 3”, Chebyshev. Sb., 16:2 (2015), 66–78 | MR

[9] V. M. Buchstaber and E. Yu. Bunkova, “Manifolds of solutions for Hirzebruch functional equations”, Proc. Steklov Inst. Math., 290, 2015, 125–137 | DOI | DOI | MR | Zbl

[10] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[11] V. M. Buchstaber and A. V. Ustinov, “Coefficient rings of formal group laws”, Sb. Math., 206:11 (2015), 1524–1563 | DOI | DOI | MR | Zbl

[12] E. Yu. Bunkova, “Elliptic function of level 4”, Proc. Steklov Inst. Math., 294, 2016, 201–214 | DOI | DOI | MR | Zbl

[13] E. Yu. Bunkova, “Hirzebruch functional equation: Classification of solutions”, Proc. Steklov Inst. Math., 302, 2018, 33–47 | DOI | DOI | MR

[14] E. Yu. Bunkova, V. M. Buchstaber, and A. V. Ustinov, “Coefficient rings of Tate formal groups determining Krichever genera”, Proc. Steklov Inst. Math., 292, 2016, 37–62 ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii: Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | DOI | DOI | MR | Zbl

[15] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, v. 3, Bateman Manuscript Project, McGraw-Hill, New York, 1955 | MR | Zbl

[16] Hazewinkel M., Formal groups and applications, Acad. Press, New York, 1978 | MR | Zbl

[17] Hirzebruch F., Topological methods in algebraic geometry, 3rd ed., Springer, Berlin, 1966 | MR | Zbl

[18] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Aspects Math., E20, Vieweg, Braunschweig, 1992 | DOI | MR | Zbl

[19] Höhn G., Komplexe elliptische Geschlechter und $S^1$-äquivariante Kobordismustheorie, E-print, 2004, arXiv: math/0405232 [math.AT]

[20] I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles”, Funct. Anal. Appl., 14:4 (1980), 282–290 | DOI | MR | Zbl

[21] I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions”, Math. Notes, 47:2 (1990), 132–142 | DOI | MR | Zbl

[22] Lang S., Elliptic functions, Springer, New York, 1987 | MR | Zbl

[23] S. P. Novikov, “Adams operators and fixed points”, Math. USSR, Izv., 2:6 (1968), 1193–1211 | DOI | Zbl

[24] Ochanine S., “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | Zbl

[25] A. V. Ustinov, “Buchstaber formal group and elliptic functions of small levels”, Math. Notes, 102:1 (2017), 81–91 | DOI | DOI | Zbl

[26] A. V. Ustinov, “On formal Buchstaber groups of special form”, Math. Notes, 105:6 (2019), 894–904 | DOI | DOI

[27] Whittaker E.T., Watson G.N., A course of modern analysis: An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Repr. of the 4th ed. 1927, Cambridge Univ. Press, Cambridge, 1996 | Zbl

[28] Witten E., “Elliptic genera and quantum field theory”, Commun. Math. Phys., 109 (1987), 525–536 | DOI | Zbl