The Homotopy Types of Sp(2)-Gauge Groups over Closed Simply Connected Four-Manifolds
Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 309-329

Voir la notice de l'article provenant de la source Math-Net.Ru

We determine the number of distinct homotopy types for the gauge groups of principal $\mathrm {Sp}(2)$-bundles over a closed simply connected four-manifold.
Keywords: gauge group, simply connected four-manifold
Mots-clés : homotopy type.
@article{TRSPY_2019_305_a16,
     author = {Tseleung So and Stephen Theriault},
     title = {The {Homotopy} {Types} of {Sp(2)-Gauge} {Groups} over {Closed} {Simply} {Connected} {Four-Manifolds}},
     journal = {Informatics and Automation},
     pages = {309--329},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a16/}
}
TY  - JOUR
AU  - Tseleung So
AU  - Stephen Theriault
TI  - The Homotopy Types of Sp(2)-Gauge Groups over Closed Simply Connected Four-Manifolds
JO  - Informatics and Automation
PY  - 2019
SP  - 309
EP  - 329
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a16/
LA  - ru
ID  - TRSPY_2019_305_a16
ER  - 
%0 Journal Article
%A Tseleung So
%A Stephen Theriault
%T The Homotopy Types of Sp(2)-Gauge Groups over Closed Simply Connected Four-Manifolds
%J Informatics and Automation
%D 2019
%P 309-329
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a16/
%G ru
%F TRSPY_2019_305_a16
Tseleung So; Stephen Theriault. The Homotopy Types of Sp(2)-Gauge Groups over Closed Simply Connected Four-Manifolds. Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 309-329. http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a16/