Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers
Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 250-270

Voir la notice de l'article provenant de la source Math-Net.Ru

An Alexander self-dual complex gives rise to a compactification of $\mathcal M_{0,n}$, called an ASD compactification, which is a smooth algebraic variety. ASD compactifications include (but are not exhausted by) the polygon spaces, or the configuration spaces of flexible polygons. We present an explicit description of the Chow rings of ASD compactifications. We study the analogs of Kontsevich's tautological bundles, compute their Chern classes, compute top intersections of the Chern classes, and derive a recursion for the intersection numbers.
Keywords: Alexander self-dual complex, modular compactification, tautological bundle, Chern class, Chow ring.
@article{TRSPY_2019_305_a12,
     author = {Ilia I. Nekrasov and Gaiane Yu. Panina},
     title = {Compactifications of $\mathcal M_{0,n}$ {Associated} with {Alexander} {Self-Dual} {Complexes:} {Chow} {Rings,} $\psi ${-Classes,} and {Intersection} {Numbers}},
     journal = {Informatics and Automation},
     pages = {250--270},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a12/}
}
TY  - JOUR
AU  - Ilia I. Nekrasov
AU  - Gaiane Yu. Panina
TI  - Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers
JO  - Informatics and Automation
PY  - 2019
SP  - 250
EP  - 270
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a12/
LA  - ru
ID  - TRSPY_2019_305_a12
ER  - 
%0 Journal Article
%A Ilia I. Nekrasov
%A Gaiane Yu. Panina
%T Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers
%J Informatics and Automation
%D 2019
%P 250-270
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a12/
%G ru
%F TRSPY_2019_305_a12
Ilia I. Nekrasov; Gaiane Yu. Panina. Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers. Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 250-270. http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a12/