Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_305_a12, author = {Ilia I. Nekrasov and Gaiane Yu. Panina}, title = {Compactifications of $\mathcal M_{0,n}$ {Associated} with {Alexander} {Self-Dual} {Complexes:} {Chow} {Rings,} $\psi ${-Classes,} and {Intersection} {Numbers}}, journal = {Informatics and Automation}, pages = {250--270}, publisher = {mathdoc}, volume = {305}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a12/} }
TY - JOUR AU - Ilia I. Nekrasov AU - Gaiane Yu. Panina TI - Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers JO - Informatics and Automation PY - 2019 SP - 250 EP - 270 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a12/ LA - ru ID - TRSPY_2019_305_a12 ER -
%0 Journal Article %A Ilia I. Nekrasov %A Gaiane Yu. Panina %T Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers %J Informatics and Automation %D 2019 %P 250-270 %V 305 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a12/ %G ru %F TRSPY_2019_305_a12
Ilia I. Nekrasov; Gaiane Yu. Panina. Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers. Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 250-270. http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a12/