Hermitian Metric and the Infinite Dihedral Group
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 149-158

Voir la notice de l'article provenant de la source Math-Net.Ru

For a tuple $A=(A_1,A_2,\dots ,A_n)$ of elements in a unital Banach algebra $\mathcal B$, the associated multiparameter pencil is $A(z)=z_1 A_1 + z_2 A_2 + \dots +z_n A_n$. The projective spectrum $P(A)$ is the collection of $z\in \mathbb C^n$ such that $A(z)$ is not invertible. Using the fundamental form $\Omega _A=-\omega _A^*\wedge \omega _A$, where $\omega _A(z) = A^{-1}(z)\,dA(z)$ is the Maurer–Cartan form, R. Douglas and the second author defined and studied a natural Hermitian metric on the resolvent set $P^c(A)=\mathbb{C}^n\setminus P(A)$. This paper examines that metric in the case of the infinite dihedral group, $D_\infty = \langle a,t\mid a^2=t^2 =1\rangle $, with respect to the left regular representation $\lambda $. For the non-homogeneous pencil $R(z) = I+z_1\lambda (a)+z_2\lambda (t)$, we explicitly compute the metric on $P^c(R)$ and show that the completion of $P^c(R)$ under the metric is $\mathbb C^2\setminus \{(\pm 1,0), (0,\pm 1)\}$, which rediscovers the classical spectra $\sigma (\lambda (a))=\sigma (\lambda (t))=\{\pm 1\}$. This paper is a follow-up of the papers by R. G. Douglas and R. Yang (2018) and R. Grigorchuk and R. Yang (2017).
Keywords: projective spectrum, infinite dihedral group, projective resolvent set, left regular representation, Fuglede–Kadison determinant.
@article{TRSPY_2019_304_a8,
     author = {B. Goldberg and R. Yang},
     title = {Hermitian {Metric} and the {Infinite} {Dihedral} {Group}},
     journal = {Informatics and Automation},
     pages = {149--158},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a8/}
}
TY  - JOUR
AU  - B. Goldberg
AU  - R. Yang
TI  - Hermitian Metric and the Infinite Dihedral Group
JO  - Informatics and Automation
PY  - 2019
SP  - 149
EP  - 158
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a8/
LA  - ru
ID  - TRSPY_2019_304_a8
ER  - 
%0 Journal Article
%A B. Goldberg
%A R. Yang
%T Hermitian Metric and the Infinite Dihedral Group
%J Informatics and Automation
%D 2019
%P 149-158
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a8/
%G ru
%F TRSPY_2019_304_a8
B. Goldberg; R. Yang. Hermitian Metric and the Infinite Dihedral Group. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 149-158. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a8/