Hermitian Metric and the Infinite Dihedral Group
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 149-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a tuple $A=(A_1,A_2,\dots ,A_n)$ of elements in a unital Banach algebra $\mathcal B$, the associated multiparameter pencil is $A(z)=z_1 A_1 + z_2 A_2 + \dots +z_n A_n$. The projective spectrum $P(A)$ is the collection of $z\in \mathbb C^n$ such that $A(z)$ is not invertible. Using the fundamental form $\Omega _A=-\omega _A^*\wedge \omega _A$, where $\omega _A(z) = A^{-1}(z)\,dA(z)$ is the Maurer–Cartan form, R. Douglas and the second author defined and studied a natural Hermitian metric on the resolvent set $P^c(A)=\mathbb{C}^n\setminus P(A)$. This paper examines that metric in the case of the infinite dihedral group, $D_\infty = \langle a,t\mid a^2=t^2 =1\rangle $, with respect to the left regular representation $\lambda $. For the non-homogeneous pencil $R(z) = I+z_1\lambda (a)+z_2\lambda (t)$, we explicitly compute the metric on $P^c(R)$ and show that the completion of $P^c(R)$ under the metric is $\mathbb C^2\setminus \{(\pm 1,0), (0,\pm 1)\}$, which rediscovers the classical spectra $\sigma (\lambda (a))=\sigma (\lambda (t))=\{\pm 1\}$. This paper is a follow-up of the papers by R. G. Douglas and R. Yang (2018) and R. Grigorchuk and R. Yang (2017).
Keywords: projective spectrum, infinite dihedral group, projective resolvent set, left regular representation, Fuglede–Kadison determinant.
@article{TRSPY_2019_304_a8,
     author = {B. Goldberg and R. Yang},
     title = {Hermitian {Metric} and the {Infinite} {Dihedral} {Group}},
     journal = {Informatics and Automation},
     pages = {149--158},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a8/}
}
TY  - JOUR
AU  - B. Goldberg
AU  - R. Yang
TI  - Hermitian Metric and the Infinite Dihedral Group
JO  - Informatics and Automation
PY  - 2019
SP  - 149
EP  - 158
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a8/
LA  - ru
ID  - TRSPY_2019_304_a8
ER  - 
%0 Journal Article
%A B. Goldberg
%A R. Yang
%T Hermitian Metric and the Infinite Dihedral Group
%J Informatics and Automation
%D 2019
%P 149-158
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a8/
%G ru
%F TRSPY_2019_304_a8
B. Goldberg; R. Yang. Hermitian Metric and the Infinite Dihedral Group. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 149-158. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a8/

[1] Bannon J.P., Cade P., Yang R., “On the spectrum of Banach algebra-valued entire functions”, Ill. J. Math., 55:4 (2011), 1455–1465 | DOI | MR | Zbl

[2] Cade P., Yang R., “Projective spectrum and cyclic cohomology”, J. Funct. Anal., 265:9 (2013), 1916–1933 | DOI | MR | Zbl

[3] Chagouel I., Stessin M., Zhu K., “Geometric spectral theory for compact operators”, Trans. Amer. Math. Soc., 368:3 (2016), 1559–1582 | DOI | MR | Zbl

[4] Dedekind R., Gesammelte mathematische Werke, v. 2, Chelsea Publ., New York, 1969

[5] Dickson L.E., “An elementary exposition of Frobenius's theory of group-characters and group-determinants”, Ann. Math. Ser. 2., 4:1 (1902), 25–49 | DOI | MR | Zbl

[6] Dickson L.E., “Determination of all general homogeneous polynomials expressible as determinants with linear elements”, Trans. Amer. Math. Soc., 22:2 (1921), 167–179 | DOI | MR | Zbl

[7] Douglas R.G., Yang R., “Hermitian geometry on resolvent set”, Operator theory, operator algebras, and matrix theory, Oper. Theory Adv. Appl., 267, Birkhäuser, Cham, 2018, 167–183 | DOI | MR

[8] Formanek E., Sibley D., “The group determinant determines the group”, Proc. Amer. Math. Soc., 112:3 (1991), 649–656 | DOI | MR | Zbl

[9] Frobenius G., “Über vertauschbare Matrizen”, Sitzungsber. König. Preuss. Akad. Wiss. Berlin, 1896, 601–614 | Zbl

[10] Fuglede B., Kadison R.V., “Determinant theory in finite factors”, Ann. Math. Ser. 2., 55 (1952), 520–530 | DOI | MR | Zbl

[11] R. Grigorchuk and R. Yang, “Joint spectrum and the infinite dihedral group”, Proc. Steklov Inst. Math., 297, 2017, 145–178 | DOI | MR | Zbl

[12] Halmos P.R., “Two subspaces”, Trans. Amer. Math. Soc., 144 (1969), 381–389 | DOI | MR | Zbl

[13] De la Harpe P., “Fuglede–Kadison determinant: theme and variations”, Proc. Natl. Acad. Sci. USA, 110:40 (2013), 15864–15877 | DOI | MR

[14] De la Harpe P., Skandalis G., “Déterminant associé à une trace sur une algèbre de Banach”, Ann. Inst. Fourier, 34:1 (1984), 241–260 | DOI | MR | Zbl

[15] He W., Yang R., “Projective spectrum and kernel bundle”, Sci. China. Math., 58:11 (2015), 2363–2372 | DOI | MR | Zbl

[16] Hu Z., Yang R., “On the characteristic polynomials of multiparameter pencils”, Linear Algebra Appl., 558 (2018), 250–263 | DOI | MR | Zbl

[17] He W., Wang X., Yang R., “Projective spectrum and kernel bundle. II”, J. Oper. Theory., 78:2 (2017), 417–433 | MR | Zbl

[18] Raeburn I., Sinclair A.M., “The $C^*$-algebra generated by two projections”, Math. Scand., 65:2 (1989), 278–290 | DOI | MR | Zbl

[19] Stessin M.I., Tchernev A.B., Spectral algebraic curves and decomposable operator tuples, E-print, 2015, arXiv: 1509.06274v1 [math.SP]

[20] Stessin M., Yang R., Zhu K., “Analyticity of a joint spectrum and a multivariable analytic Fredholm theorem”, New York J. Math., 17a (2011), 39–44 | MR | Zbl

[21] Yang R., “Projective spectrum in Banach algebras”, J. Topol. Anal., 1:3 (2009), 289–306 | DOI | MR | Zbl

[22] M. G. Zaidenberg, S. G. Krein, P. A. Kuchment, and A. A. Pankov, “Banach bundles and linear operators”, Russ. Math. Surv., 30:5 (1975), 115–175 | DOI | MR | Zbl | Zbl