Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_304_a8, author = {B. Goldberg and R. Yang}, title = {Hermitian {Metric} and the {Infinite} {Dihedral} {Group}}, journal = {Informatics and Automation}, pages = {149--158}, publisher = {mathdoc}, volume = {304}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a8/} }
B. Goldberg; R. Yang. Hermitian Metric and the Infinite Dihedral Group. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 149-158. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a8/
[1] Bannon J.P., Cade P., Yang R., “On the spectrum of Banach algebra-valued entire functions”, Ill. J. Math., 55:4 (2011), 1455–1465 | DOI | MR | Zbl
[2] Cade P., Yang R., “Projective spectrum and cyclic cohomology”, J. Funct. Anal., 265:9 (2013), 1916–1933 | DOI | MR | Zbl
[3] Chagouel I., Stessin M., Zhu K., “Geometric spectral theory for compact operators”, Trans. Amer. Math. Soc., 368:3 (2016), 1559–1582 | DOI | MR | Zbl
[4] Dedekind R., Gesammelte mathematische Werke, v. 2, Chelsea Publ., New York, 1969
[5] Dickson L.E., “An elementary exposition of Frobenius's theory of group-characters and group-determinants”, Ann. Math. Ser. 2., 4:1 (1902), 25–49 | DOI | MR | Zbl
[6] Dickson L.E., “Determination of all general homogeneous polynomials expressible as determinants with linear elements”, Trans. Amer. Math. Soc., 22:2 (1921), 167–179 | DOI | MR | Zbl
[7] Douglas R.G., Yang R., “Hermitian geometry on resolvent set”, Operator theory, operator algebras, and matrix theory, Oper. Theory Adv. Appl., 267, Birkhäuser, Cham, 2018, 167–183 | DOI | MR
[8] Formanek E., Sibley D., “The group determinant determines the group”, Proc. Amer. Math. Soc., 112:3 (1991), 649–656 | DOI | MR | Zbl
[9] Frobenius G., “Über vertauschbare Matrizen”, Sitzungsber. König. Preuss. Akad. Wiss. Berlin, 1896, 601–614 | Zbl
[10] Fuglede B., Kadison R.V., “Determinant theory in finite factors”, Ann. Math. Ser. 2., 55 (1952), 520–530 | DOI | MR | Zbl
[11] R. Grigorchuk and R. Yang, “Joint spectrum and the infinite dihedral group”, Proc. Steklov Inst. Math., 297, 2017, 145–178 | DOI | MR | Zbl
[12] Halmos P.R., “Two subspaces”, Trans. Amer. Math. Soc., 144 (1969), 381–389 | DOI | MR | Zbl
[13] De la Harpe P., “Fuglede–Kadison determinant: theme and variations”, Proc. Natl. Acad. Sci. USA, 110:40 (2013), 15864–15877 | DOI | MR
[14] De la Harpe P., Skandalis G., “Déterminant associé à une trace sur une algèbre de Banach”, Ann. Inst. Fourier, 34:1 (1984), 241–260 | DOI | MR | Zbl
[15] He W., Yang R., “Projective spectrum and kernel bundle”, Sci. China. Math., 58:11 (2015), 2363–2372 | DOI | MR | Zbl
[16] Hu Z., Yang R., “On the characteristic polynomials of multiparameter pencils”, Linear Algebra Appl., 558 (2018), 250–263 | DOI | MR | Zbl
[17] He W., Wang X., Yang R., “Projective spectrum and kernel bundle. II”, J. Oper. Theory., 78:2 (2017), 417–433 | MR | Zbl
[18] Raeburn I., Sinclair A.M., “The $C^*$-algebra generated by two projections”, Math. Scand., 65:2 (1989), 278–290 | DOI | MR | Zbl
[19] Stessin M.I., Tchernev A.B., Spectral algebraic curves and decomposable operator tuples, E-print, 2015, arXiv: 1509.06274v1 [math.SP]
[20] Stessin M., Yang R., Zhu K., “Analyticity of a joint spectrum and a multivariable analytic Fredholm theorem”, New York J. Math., 17a (2011), 39–44 | MR | Zbl
[21] Yang R., “Projective spectrum in Banach algebras”, J. Topol. Anal., 1:3 (2009), 289–306 | DOI | MR | Zbl
[22] M. G. Zaidenberg, S. G. Krein, P. A. Kuchment, and A. A. Pankov, “Banach bundles and linear operators”, Russ. Math. Surv., 30:5 (1975), 115–175 | DOI | MR | Zbl | Zbl