Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 68-82
Voir la notice de l'article provenant de la source Math-Net.Ru
Existence and uniqueness theorems are obtained for a fixed point of a mapping of a complete metric space into itself, that generalize the theorems of L. V. Kantorovich for smooth mappings of Banach spaces. These results are extended to the coincidence points of both ordinary and maultivalued mappings acting in metric spaces.
@article{TRSPY_2019_304_a4,
author = {A. V. Arutyunov and E. S. Zhukovskiy and S. E. Zhukovskiy},
title = {Kantorovich's {Fixed} {Point} {Theorem} in {Metric} {Spaces} and {Coincidence} {Points}},
journal = {Informatics and Automation},
pages = {68--82},
publisher = {mathdoc},
volume = {304},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/}
}
TY - JOUR AU - A. V. Arutyunov AU - E. S. Zhukovskiy AU - S. E. Zhukovskiy TI - Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points JO - Informatics and Automation PY - 2019 SP - 68 EP - 82 VL - 304 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/ LA - ru ID - TRSPY_2019_304_a4 ER -
%0 Journal Article %A A. V. Arutyunov %A E. S. Zhukovskiy %A S. E. Zhukovskiy %T Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points %J Informatics and Automation %D 2019 %P 68-82 %V 304 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/ %G ru %F TRSPY_2019_304_a4
A. V. Arutyunov; E. S. Zhukovskiy; S. E. Zhukovskiy. Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 68-82. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/