Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_304_a4, author = {A. V. Arutyunov and E. S. Zhukovskiy and S. E. Zhukovskiy}, title = {Kantorovich's {Fixed} {Point} {Theorem} in {Metric} {Spaces} and {Coincidence} {Points}}, journal = {Informatics and Automation}, pages = {68--82}, publisher = {mathdoc}, volume = {304}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/} }
TY - JOUR AU - A. V. Arutyunov AU - E. S. Zhukovskiy AU - S. E. Zhukovskiy TI - Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points JO - Informatics and Automation PY - 2019 SP - 68 EP - 82 VL - 304 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/ LA - ru ID - TRSPY_2019_304_a4 ER -
%0 Journal Article %A A. V. Arutyunov %A E. S. Zhukovskiy %A S. E. Zhukovskiy %T Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points %J Informatics and Automation %D 2019 %P 68-82 %V 304 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/ %G ru %F TRSPY_2019_304_a4
A. V. Arutyunov; E. S. Zhukovskiy; S. E. Zhukovskiy. Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 68-82. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/
[1] Arutyunov A.V., “Second-order conditions in extremal problems. The abnormal points”, Trans. Amer. Math. Soc., 350:11 (1998), 4341–4365 | DOI | MR | Zbl
[2] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl
[3] A. V. Arutyunov and A. V. Greshnov, “$(q_1,q_2)$-Quasimetric spaces. Covering mappings and coincidence points”, Izv. Math., 82:2 (2018), 245–272 | DOI | DOI | MR | Zbl
[4] Arutyunov A.V., Vinter R.B., “A simple ‘finite approximations’ proof of the Pontryagin maximum principle under reduced differentiability hypotheses”, Set-Valued Anal., 12:1-2 (2004), 5–24 | DOI | MR | Zbl
[5] A. V. Arutyunov, E. S. Zhukovskii, and S. E. Zhukovskii, “On the well-posedness of differential equations unsolved for the derivative”, Diff. Eqns., 47:11 (2011), 1541–1555 | MR | Zbl
[6] A. V. Arutyunov, E. S. Zhukovskiy, and S. E. Zhukovskiy, “On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces”, Sb. Math., 209:8 (2018), 1107–1130 | DOI | DOI | MR | Zbl
[7] A. V. Arutyunov and S. E. Zhukovskiy, “Variational principles in nonlinear analysis and their generalization”, Math. Notes, 103:6 (2018), 1014–1019 | DOI | DOI | MR | Zbl
[8] Arutyunov A.V., Zhukovskiy S.E., “Existence of local solutions in constrained dynamic systems”, Appl. Anal., 90:6 (2011), 889–898 | DOI | MR | Zbl
[9] E. R. Avakov, A. V. Arutyunov, and E. S. Zhukovskii, “Covering mappings and their applications to differential equations unsolved for the derivative”, Diff. Eqns., 45:5 (2009), 627–649 | MR | Zbl
[10] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V. V. Obukhovskii, Introduction to the Theory of Multi-valued Mappings and Differential Inclusions, URSS, Moscow, 2005 | MR
[11] L. V. Kantorovich, “Some further applications of the Newton method for functional equations”, Vestn. Leningrad. Univ., Mat., Mekh., Astron., 1957, no. 7, 68–103 | Zbl
[12] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Nauka, Moscow, 1984 | MR | Zbl
[13] Mordukhovich B.S., Variational analysis and generalized differentiation. I: Basic theory, Grundl. Math. Wiss., 330, Springer, Berlin, 2006 | MR
[14] Uderzo A., “Exact penalty functions and calmness for mathematical programming under nonlinear perturbations”, Nonlinear Anal. Theory Methods Appl., 73:6 (2010), 1596–1609 | DOI | MR | Zbl
[15] Zubelevich O., Coincidence points of mappings in Banach spaces, E-print, 2018, arXiv: 1804.10501 [math.FA]
[16] Zubelevich O., “Coincidence points of mappings in Banach spaces”, Fixed Point Theory, 20 (2019) (to appear)