Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 68-82

Voir la notice de l'article provenant de la source Math-Net.Ru

Existence and uniqueness theorems are obtained for a fixed point of a mapping of a complete metric space into itself, that generalize the theorems of L. V. Kantorovich for smooth mappings of Banach spaces. These results are extended to the coincidence points of both ordinary and maultivalued mappings acting in metric spaces.
@article{TRSPY_2019_304_a4,
     author = {A. V. Arutyunov and E. S. Zhukovskiy and S. E. Zhukovskiy},
     title = {Kantorovich's {Fixed} {Point} {Theorem} in {Metric} {Spaces} and {Coincidence} {Points}},
     journal = {Informatics and Automation},
     pages = {68--82},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - E. S. Zhukovskiy
AU  - S. E. Zhukovskiy
TI  - Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points
JO  - Informatics and Automation
PY  - 2019
SP  - 68
EP  - 82
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/
LA  - ru
ID  - TRSPY_2019_304_a4
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A E. S. Zhukovskiy
%A S. E. Zhukovskiy
%T Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points
%J Informatics and Automation
%D 2019
%P 68-82
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/
%G ru
%F TRSPY_2019_304_a4
A. V. Arutyunov; E. S. Zhukovskiy; S. E. Zhukovskiy. Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 68-82. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/