Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 68-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Existence and uniqueness theorems are obtained for a fixed point of a mapping of a complete metric space into itself, that generalize the theorems of L. V. Kantorovich for smooth mappings of Banach spaces. These results are extended to the coincidence points of both ordinary and maultivalued mappings acting in metric spaces.
@article{TRSPY_2019_304_a4,
     author = {A. V. Arutyunov and E. S. Zhukovskiy and S. E. Zhukovskiy},
     title = {Kantorovich's {Fixed} {Point} {Theorem} in {Metric} {Spaces} and {Coincidence} {Points}},
     journal = {Informatics and Automation},
     pages = {68--82},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - E. S. Zhukovskiy
AU  - S. E. Zhukovskiy
TI  - Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points
JO  - Informatics and Automation
PY  - 2019
SP  - 68
EP  - 82
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/
LA  - ru
ID  - TRSPY_2019_304_a4
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A E. S. Zhukovskiy
%A S. E. Zhukovskiy
%T Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points
%J Informatics and Automation
%D 2019
%P 68-82
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/
%G ru
%F TRSPY_2019_304_a4
A. V. Arutyunov; E. S. Zhukovskiy; S. E. Zhukovskiy. Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 68-82. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a4/

[1] Arutyunov A.V., “Second-order conditions in extremal problems. The abnormal points”, Trans. Amer. Math. Soc., 350:11 (1998), 4341–4365 | DOI | MR | Zbl

[2] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl

[3] A. V. Arutyunov and A. V. Greshnov, “$(q_1,q_2)$-Quasimetric spaces. Covering mappings and coincidence points”, Izv. Math., 82:2 (2018), 245–272 | DOI | DOI | MR | Zbl

[4] Arutyunov A.V., Vinter R.B., “A simple ‘finite approximations’ proof of the Pontryagin maximum principle under reduced differentiability hypotheses”, Set-Valued Anal., 12:1-2 (2004), 5–24 | DOI | MR | Zbl

[5] A. V. Arutyunov, E. S. Zhukovskii, and S. E. Zhukovskii, “On the well-posedness of differential equations unsolved for the derivative”, Diff. Eqns., 47:11 (2011), 1541–1555 | MR | Zbl

[6] A. V. Arutyunov, E. S. Zhukovskiy, and S. E. Zhukovskiy, “On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces”, Sb. Math., 209:8 (2018), 1107–1130 | DOI | DOI | MR | Zbl

[7] A. V. Arutyunov and S. E. Zhukovskiy, “Variational principles in nonlinear analysis and their generalization”, Math. Notes, 103:6 (2018), 1014–1019 | DOI | DOI | MR | Zbl

[8] Arutyunov A.V., Zhukovskiy S.E., “Existence of local solutions in constrained dynamic systems”, Appl. Anal., 90:6 (2011), 889–898 | DOI | MR | Zbl

[9] E. R. Avakov, A. V. Arutyunov, and E. S. Zhukovskii, “Covering mappings and their applications to differential equations unsolved for the derivative”, Diff. Eqns., 45:5 (2009), 627–649 | MR | Zbl

[10] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V. V. Obukhovskii, Introduction to the Theory of Multi-valued Mappings and Differential Inclusions, URSS, Moscow, 2005 | MR

[11] L. V. Kantorovich, “Some further applications of the Newton method for functional equations”, Vestn. Leningrad. Univ., Mat., Mekh., Astron., 1957, no. 7, 68–103 | Zbl

[12] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Nauka, Moscow, 1984 | MR | Zbl

[13] Mordukhovich B.S., Variational analysis and generalized differentiation. I: Basic theory, Grundl. Math. Wiss., 330, Springer, Berlin, 2006 | MR

[14] Uderzo A., “Exact penalty functions and calmness for mathematical programming under nonlinear perturbations”, Nonlinear Anal. Theory Methods Appl., 73:6 (2010), 1596–1609 | DOI | MR | Zbl

[15] Zubelevich O., Coincidence points of mappings in Banach spaces, E-print, 2018, arXiv: 1804.10501 [math.FA]

[16] Zubelevich O., “Coincidence points of mappings in Banach spaces”, Fixed Point Theory, 20 (2019) (to appear)