A Sub-Finsler Problem on the Cartan Group
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 49-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a sub-Finsler geometric problem on the free nilpotent group of rank $2$ and step $3$. Such a group is also called the Cartan group and has a natural structure of Carnot group, which we metrize by considering the $\ell _\infty $ norm on its first layer. We adopt the point of view of time-optimal control theory. We characterize extremal curves via the Pontryagin maximum principle. We describe abnormal and singular arcs and construct the bang–bang flow.
@article{TRSPY_2019_304_a3,
     author = {A. A. Ardentov and E. Le Donne and Yu. L. Sachkov},
     title = {A {Sub-Finsler} {Problem} on the {Cartan} {Group}},
     journal = {Informatics and Automation},
     pages = {49--67},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a3/}
}
TY  - JOUR
AU  - A. A. Ardentov
AU  - E. Le Donne
AU  - Yu. L. Sachkov
TI  - A Sub-Finsler Problem on the Cartan Group
JO  - Informatics and Automation
PY  - 2019
SP  - 49
EP  - 67
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a3/
LA  - ru
ID  - TRSPY_2019_304_a3
ER  - 
%0 Journal Article
%A A. A. Ardentov
%A E. Le Donne
%A Yu. L. Sachkov
%T A Sub-Finsler Problem on the Cartan Group
%J Informatics and Automation
%D 2019
%P 49-67
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a3/
%G ru
%F TRSPY_2019_304_a3
A. A. Ardentov; E. Le Donne; Yu. L. Sachkov. A Sub-Finsler Problem on the Cartan Group. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 49-67. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a3/

[1] A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl

[2] Barilari D., Boscain U., Le Donne E., Sigalotti M., “Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions”, J. Dyn. Control Syst., 23:3 (2017), 547–575 | DOI | MR | Zbl

[3] V. N. Berestovskii, “Structure of homogeneous locally compact spaces with intrinsic metric”, Sib. Math. J., 30:1 (1989), 16–25 | DOI | MR | MR

[4] V. N. Berestovskii, “Homogeneous manifolds with intrinsic metric. II”, Sib. Math. J., 30:2 (1989), 180–191 | DOI | MR

[5] Boscain U., Chambrion T., Charlot G., “Nonisotropic 3-level quantum systems: Complete solutions for minimum time and minimum energy”, Discrete Contin. Dyn. Syst. Ser. B, 5:4 (2005), 957–990 | DOI | MR | Zbl

[6] Breuillard E., Le Donne E., “On the rate of convergence to the asymptotic cone for nilpotent groups and subFinsler geometry”, Proc. Natl. Acad. Sci. USA, 110:48 (2013), 19220–19226 | DOI | MR | Zbl

[7] Clelland J.N., Moseley C.G., “Sub-Finsler geometry in dimension three”, Diff. Geom. Appl., 24:6 (2006), 628–651 | DOI | MR | Zbl

[8] Clelland J.N., Moseley C.G., Wilkens G.R., “Geometry of sub-Finsler Engel manifolds”, Asian J. Math., 11:4 (2007), 699–726 | DOI | MR | Zbl

[9] Cowling M.G., Martini A., “Sub-Finsler geometry and finite propagation speed”, Trends in harmonic analysis, Springer INdAM Ser., 3, Springer, Milan, 2013, 147–205 | DOI | MR | Zbl

[10] Hakavuori E., Le Donne E., Blowups and blowdowns of geodesics in carnot groups, E-print, 2018, arXiv: 1806.09375 [math.MG]

[11] Le Donne E., “A metric characterization of Carnot groups”, Proc. Amer. Math. Soc., 143:2 (2015), 845–849 | DOI | MR | Zbl

[12] Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. Math. Ser. 2., 129:1 (1989), 1–60 | DOI | MR | Zbl

[13] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, New York, 1962 | MR | MR | Zbl

[14] Yu. L. Sachkov, “Exponential map in the generalized Dido problem”, Sb. Math., 194:9 (2003), 1331–1359 | DOI | DOI | MR | Zbl