Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_304_a3, author = {A. A. Ardentov and E. Le Donne and Yu. L. Sachkov}, title = {A {Sub-Finsler} {Problem} on the {Cartan} {Group}}, journal = {Informatics and Automation}, pages = {49--67}, publisher = {mathdoc}, volume = {304}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a3/} }
A. A. Ardentov; E. Le Donne; Yu. L. Sachkov. A Sub-Finsler Problem on the Cartan Group. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 49-67. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a3/
[1] A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl
[2] Barilari D., Boscain U., Le Donne E., Sigalotti M., “Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions”, J. Dyn. Control Syst., 23:3 (2017), 547–575 | DOI | MR | Zbl
[3] V. N. Berestovskii, “Structure of homogeneous locally compact spaces with intrinsic metric”, Sib. Math. J., 30:1 (1989), 16–25 | DOI | MR | MR
[4] V. N. Berestovskii, “Homogeneous manifolds with intrinsic metric. II”, Sib. Math. J., 30:2 (1989), 180–191 | DOI | MR
[5] Boscain U., Chambrion T., Charlot G., “Nonisotropic 3-level quantum systems: Complete solutions for minimum time and minimum energy”, Discrete Contin. Dyn. Syst. Ser. B, 5:4 (2005), 957–990 | DOI | MR | Zbl
[6] Breuillard E., Le Donne E., “On the rate of convergence to the asymptotic cone for nilpotent groups and subFinsler geometry”, Proc. Natl. Acad. Sci. USA, 110:48 (2013), 19220–19226 | DOI | MR | Zbl
[7] Clelland J.N., Moseley C.G., “Sub-Finsler geometry in dimension three”, Diff. Geom. Appl., 24:6 (2006), 628–651 | DOI | MR | Zbl
[8] Clelland J.N., Moseley C.G., Wilkens G.R., “Geometry of sub-Finsler Engel manifolds”, Asian J. Math., 11:4 (2007), 699–726 | DOI | MR | Zbl
[9] Cowling M.G., Martini A., “Sub-Finsler geometry and finite propagation speed”, Trends in harmonic analysis, Springer INdAM Ser., 3, Springer, Milan, 2013, 147–205 | DOI | MR | Zbl
[10] Hakavuori E., Le Donne E., Blowups and blowdowns of geodesics in carnot groups, E-print, 2018, arXiv: 1806.09375 [math.MG]
[11] Le Donne E., “A metric characterization of Carnot groups”, Proc. Amer. Math. Soc., 143:2 (2015), 845–849 | DOI | MR | Zbl
[12] Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. Math. Ser. 2., 129:1 (1989), 1–60 | DOI | MR | Zbl
[13] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, New York, 1962 | MR | MR | Zbl
[14] Yu. L. Sachkov, “Exponential map in the generalized Dido problem”, Sb. Math., 194:9 (2003), 1331–1359 | DOI | DOI | MR | Zbl