A Sub-Finsler Problem on the Cartan Group
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 49-67
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a sub-Finsler geometric problem on the free nilpotent group of rank $2$ and step $3$. Such a group is also called the Cartan group and has a natural structure of Carnot group, which we metrize by considering the $\ell _\infty $ norm on its first layer. We adopt the point of view of time-optimal control theory. We characterize extremal curves via the Pontryagin maximum principle. We describe abnormal and singular arcs and construct the bang–bang flow.
@article{TRSPY_2019_304_a3,
author = {A. A. Ardentov and E. Le Donne and Yu. L. Sachkov},
title = {A {Sub-Finsler} {Problem} on the {Cartan} {Group}},
journal = {Informatics and Automation},
pages = {49--67},
publisher = {mathdoc},
volume = {304},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a3/}
}
A. A. Ardentov; E. Le Donne; Yu. L. Sachkov. A Sub-Finsler Problem on the Cartan Group. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 49-67. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a3/