A Sub-Finsler Problem on the Cartan Group
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 49-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a sub-Finsler geometric problem on the free nilpotent group of rank $2$ and step $3$. Such a group is also called the Cartan group and has a natural structure of Carnot group, which we metrize by considering the $\ell _\infty $ norm on its first layer. We adopt the point of view of time-optimal control theory. We characterize extremal curves via the Pontryagin maximum principle. We describe abnormal and singular arcs and construct the bang–bang flow.
@article{TRSPY_2019_304_a3,
     author = {A. A. Ardentov and E. Le Donne and Yu. L. Sachkov},
     title = {A {Sub-Finsler} {Problem} on the {Cartan} {Group}},
     journal = {Informatics and Automation},
     pages = {49--67},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a3/}
}
TY  - JOUR
AU  - A. A. Ardentov
AU  - E. Le Donne
AU  - Yu. L. Sachkov
TI  - A Sub-Finsler Problem on the Cartan Group
JO  - Informatics and Automation
PY  - 2019
SP  - 49
EP  - 67
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a3/
LA  - ru
ID  - TRSPY_2019_304_a3
ER  - 
%0 Journal Article
%A A. A. Ardentov
%A E. Le Donne
%A Yu. L. Sachkov
%T A Sub-Finsler Problem on the Cartan Group
%J Informatics and Automation
%D 2019
%P 49-67
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a3/
%G ru
%F TRSPY_2019_304_a3
A. A. Ardentov; E. Le Donne; Yu. L. Sachkov. A Sub-Finsler Problem on the Cartan Group. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 49-67. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a3/