The Programmed Iteration Method in a Game Problem of Realizing Trajectories in a Function Set
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 309-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a differential game in which one of the players tries to keep a trajectory within a given set of vector functions on a finite time interval; the goal of the second player is opposite. To construct the set of successful solvability in this problem, which is defined by the functional target set, we apply the programmed iteration method. The essence of the method lies in a universal game problem of programmed control that depends on parameters characterizing the constraints on the initial fragments of trajectories. As admissible control procedures, we use multivalued quasistrategies (regarding a conflict-controlled system, it is assumed that the conditions of generalized uniqueness and uniform boundedness of programmed motions are satisfied).
@article{TRSPY_2019_304_a20,
     author = {A. G. Chentsov},
     title = {The {Programmed} {Iteration} {Method} in a {Game} {Problem} of {Realizing} {Trajectories} in a {Function} {Set}},
     journal = {Informatics and Automation},
     pages = {309--325},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a20/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - The Programmed Iteration Method in a Game Problem of Realizing Trajectories in a Function Set
JO  - Informatics and Automation
PY  - 2019
SP  - 309
EP  - 325
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a20/
LA  - ru
ID  - TRSPY_2019_304_a20
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T The Programmed Iteration Method in a Game Problem of Realizing Trajectories in a Function Set
%J Informatics and Automation
%D 2019
%P 309-325
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a20/
%G ru
%F TRSPY_2019_304_a20
A. G. Chentsov. The Programmed Iteration Method in a Game Problem of Realizing Trajectories in a Function Set. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 309-325. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a20/

[1] R. Isaacs, Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization, J. Wiley Sons, New York, 1965 | MR | Zbl

[2] P. Billingsley, Convergence of Probability Measures, J. Wiley Sons, New York, 1968 | MR | Zbl

[3] A. G. Chentsov, “On the structure of a game problem of convergence”, Sov. Math., Dokl., 16 (1976), 1404–1408 | MR | Zbl

[4] A. G. Chentsov, “On a game problem of guidance with information memory”, Sov. Math., Dokl., 17 (1976), 411–414 | MR | Zbl

[5] A. G. Chentsov, Elements of Finitely Additive Measure Theory, v. 1, Ural. Gos. Tekh. Univ.–UPI, Ekaterinburg, 2008 (in Russian)

[6] A. G. Chentsov, “The program iteration method in a game problem of guidance”, Proc. Steklov Inst. Math., 297, no. Suppl. 1, 2017, S43–S61 | DOI | MR | Zbl

[7] A. G. Chentsov, “Programmed iteration method in differential games with a functional target set”, Dokl. Math., 98:1 (2018), 308–312 | DOI | MR | Zbl

[8] S. V. Chistiakov, “On solving pursuit game problems”, J. Appl. Math. Mech., 41:5 (1977), 845–852 | DOI | MR

[9] N. Dunford and J. T. Schwartz, Linear Operators, Part 1, General Theory Intersci., New York, 1958 | MR

[10] R. V. Gamkrelidze, Principles of Optimal Control Theory, Plenum, New York, 1978 | MR | Zbl

[11] N. N. Krasovskii and A. I. Subbotin, “An alternative for the game problem of convergence”, J. Appl. Math. Mech., 34:6 (1970), 948–965 | DOI | MR

[12] N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Nauka, Moscow, 1974 | Zbl

[13] Game-Theoretical Control Problems, Springer, New York, 1988 | Zbl

[14] A. V. Kryazhimskii, “On the theory of positional differential games of convergence–evasion”, Sov. Math., Dokl., 19 (1978), 408–412 | MR

[15] K. Kuratowski and A. Mostowski, Set Theory, North-Holland, Amsterdam, 1968 | MR | MR | Zbl

[16] E. F. Mishchenko, “Pursuit and evasion problems in differential games”, Eng. Cybern., 9 (1971), 787–791 | MR

[17] L. S. Pontryagin, “On the theory of differential games”, Russ. Math. Surv., 21:4 (1966), 193–246 | DOI | MR | Zbl

[18] L. S. Pontryagin, “Linear differential games. I”, Sov. Math., Dokl., 8 (1967), 769–771 | MR | Zbl

[19] L. S. Pontryagin, “Linear differential games. II”, Sov. Math., Dokl., 8 (1967), 910–912 | MR | Zbl

[20] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, New York, 1962 | MR

[21] Roxin E., “Axiomatic approach in differential games”, J. Optim. Theory Appl., 3:3 (1969), 153–163 | DOI | MR | Zbl

[22] Ryll-Nardzewski C., “A theory of pursuit and evasion”, Advances in game theory, Ann. Math. Stud., 52, Princeton Univ. Press, Princeton, NJ, 1964, 113–126 | MR

[23] A. I. Subbotin, “Extremal strategies in differential games with perfect memory”, Sov. Math., Dokl., 13 (1972), 1263–1267 | Zbl

[24] V. I. Ukhobotov, “Construction of a stable bridge for a class of linear games”, J. Appl. Math. Mech., 41:2 (1977), 350–354 | DOI | MR