On Applications of the Hamilton--Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 273-284
Voir la notice de l'article provenant de la source Math-Net.Ru
A chemotherapy model for a malignant tumor is considered, and the optimal control (therapy) problem of minimizing the number of tumor cells at a fixed final instant is investigated. In this problem, the value function is calculated, which assigns the value (the optimal achievable result) to each initial state. An optimal feedback (optimal synthesis) is constructed, using which for any initial state ensures the achievement of the corresponding optimal result. The proposed constructions are based on the method of Cauchy characteristics, the Pontryagin maximum principle, and the theory of generalized (minimax/viscosity) solutions of the Hamilton–Jacobi–Bellman equation describing the value function.
Keywords:
optimal control problem, value function, Hamilton–Jacobi–Bellman equation, minimax/viscosity solution, optimal synthesis.
@article{TRSPY_2019_304_a17,
author = {N. N. Subbotina and N. G. Novoselova},
title = {On {Applications} of the {Hamilton--Jacobi} {Equations} and {Optimal} {Control} {Theory} to {Problems} of {Chemotherapy} of {Malignant} {Tumors}},
journal = {Informatics and Automation},
pages = {273--284},
publisher = {mathdoc},
volume = {304},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a17/}
}
TY - JOUR AU - N. N. Subbotina AU - N. G. Novoselova TI - On Applications of the Hamilton--Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors JO - Informatics and Automation PY - 2019 SP - 273 EP - 284 VL - 304 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a17/ LA - ru ID - TRSPY_2019_304_a17 ER -
%0 Journal Article %A N. N. Subbotina %A N. G. Novoselova %T On Applications of the Hamilton--Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors %J Informatics and Automation %D 2019 %P 273-284 %V 304 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a17/ %G ru %F TRSPY_2019_304_a17
N. N. Subbotina; N. G. Novoselova. On Applications of the Hamilton--Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 273-284. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a17/