Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_304_a17, author = {N. N. Subbotina and N. G. Novoselova}, title = {On {Applications} of the {Hamilton--Jacobi} {Equations} and {Optimal} {Control} {Theory} to {Problems} of {Chemotherapy} of {Malignant} {Tumors}}, journal = {Informatics and Automation}, pages = {273--284}, publisher = {mathdoc}, volume = {304}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a17/} }
TY - JOUR AU - N. N. Subbotina AU - N. G. Novoselova TI - On Applications of the Hamilton--Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors JO - Informatics and Automation PY - 2019 SP - 273 EP - 284 VL - 304 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a17/ LA - ru ID - TRSPY_2019_304_a17 ER -
%0 Journal Article %A N. N. Subbotina %A N. G. Novoselova %T On Applications of the Hamilton--Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors %J Informatics and Automation %D 2019 %P 273-284 %V 304 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a17/ %G ru %F TRSPY_2019_304_a17
N. N. Subbotina; N. G. Novoselova. On Applications of the Hamilton--Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 273-284. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a17/
[1] A. S. Bratus and E. S. Chumerina, “Optimal control synthesis in therapy of solid tumor growth”, Comput. Math. Math. Phys., 48:6 (2008), 892–911 | DOI | MR | Zbl
[2] N. N. Subbotina and N. G. Novoselova, “Optimal result in a control problem with piecewise monotone dynamics”, Tr. Inst. Mat. Mekh. (Ekaterinburg), 23:4 (2017), 265–280 | MR
[3] Novoselova N.G., “Numerical constructions of optimal feedback in models of chemotherapy of a malignant tumor”, J. Bioinf. Comput. Biol., 17:01 (2019), 1940004 | DOI
[4] Subbotina N.N., Novoselova N.G., “The value function in a problem of chemotherapy of a malignant tumor growing according to the Gompertz law”, IFAC-PapersOnLine, 51:32 (2018), 855–860 | DOI
[5] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR | Zbl
[6] R. Bellman, Dynamic Programming, Princeton Univ. Press, Princeton, NJ, 1957 | MR | Zbl
[7] A. I. Subbotin, Generalized Solutions of First-Order PDEs: The Dynamical Optimization Perspective, Birkhäuser, Boston, 1995 | MR
[8] N. N. Subbotina, E. A. Kolpakova, T. B. Tokmantsev, and L. G. Shagalova, The Method of Characteristics for Hamilton–Jacobi–Bellman equations, Red.-Izd. Otd. UrO RAN, Yekaterinburg, 2013 (in Russian)
[9] N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Nauka, Moscow, 1974 | Zbl
[10] Game-Theoretical Control Problems, Springer, New York, 1988 | Zbl
[11] A. Yu. Goritskii, S. N. Kruzhkov, and G. A. Chechkin, First-Order Partial Differential Equations: Study Guide, TsPI Mekh.-Mat. Fak. Mosk. Gos. Univ., Moscow, 1999 (in Russian)