On Applications of the Hamilton--Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 273-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

A chemotherapy model for a malignant tumor is considered, and the optimal control (therapy) problem of minimizing the number of tumor cells at a fixed final instant is investigated. In this problem, the value function is calculated, which assigns the value (the optimal achievable result) to each initial state. An optimal feedback (optimal synthesis) is constructed, using which for any initial state ensures the achievement of the corresponding optimal result. The proposed constructions are based on the method of Cauchy characteristics, the Pontryagin maximum principle, and the theory of generalized (minimax/viscosity) solutions of the Hamilton–Jacobi–Bellman equation describing the value function.
Keywords: optimal control problem, value function, Hamilton–Jacobi–Bellman equation, minimax/viscosity solution, optimal synthesis.
@article{TRSPY_2019_304_a17,
     author = {N. N. Subbotina and N. G. Novoselova},
     title = {On {Applications} of the {Hamilton--Jacobi} {Equations} and {Optimal} {Control} {Theory} to {Problems} of {Chemotherapy} of {Malignant} {Tumors}},
     journal = {Informatics and Automation},
     pages = {273--284},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a17/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - N. G. Novoselova
TI  - On Applications of the Hamilton--Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors
JO  - Informatics and Automation
PY  - 2019
SP  - 273
EP  - 284
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a17/
LA  - ru
ID  - TRSPY_2019_304_a17
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A N. G. Novoselova
%T On Applications of the Hamilton--Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors
%J Informatics and Automation
%D 2019
%P 273-284
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a17/
%G ru
%F TRSPY_2019_304_a17
N. N. Subbotina; N. G. Novoselova. On Applications of the Hamilton--Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 273-284. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a17/

[1] A. S. Bratus and E. S. Chumerina, “Optimal control synthesis in therapy of solid tumor growth”, Comput. Math. Math. Phys., 48:6 (2008), 892–911 | DOI | MR | Zbl

[2] N. N. Subbotina and N. G. Novoselova, “Optimal result in a control problem with piecewise monotone dynamics”, Tr. Inst. Mat. Mekh. (Ekaterinburg), 23:4 (2017), 265–280 | MR

[3] Novoselova N.G., “Numerical constructions of optimal feedback in models of chemotherapy of a malignant tumor”, J. Bioinf. Comput. Biol., 17:01 (2019), 1940004 | DOI

[4] Subbotina N.N., Novoselova N.G., “The value function in a problem of chemotherapy of a malignant tumor growing according to the Gompertz law”, IFAC-PapersOnLine, 51:32 (2018), 855–860 | DOI

[5] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR | Zbl

[6] R. Bellman, Dynamic Programming, Princeton Univ. Press, Princeton, NJ, 1957 | MR | Zbl

[7] A. I. Subbotin, Generalized Solutions of First-Order PDEs: The Dynamical Optimization Perspective, Birkhäuser, Boston, 1995 | MR

[8] N. N. Subbotina, E. A. Kolpakova, T. B. Tokmantsev, and L. G. Shagalova, The Method of Characteristics for Hamilton–Jacobi–Bellman equations, Red.-Izd. Otd. UrO RAN, Yekaterinburg, 2013 (in Russian)

[9] N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Nauka, Moscow, 1974 | Zbl

[10] Game-Theoretical Control Problems, Springer, New York, 1988 | Zbl

[11] A. Yu. Goritskii, S. N. Kruzhkov, and G. A. Chechkin, First-Order Partial Differential Equations: Study Guide, TsPI Mekh.-Mat. Fak. Mosk. Gos. Univ., Moscow, 1999 (in Russian)