Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_304_a14, author = {V. I. Maksimov}, title = {Tracking the {Solution} of a {Nonlinear} {System} with {Partly} {Measured} {Coordinates} of the {State} {Vector}}, journal = {Informatics and Automation}, pages = {235--251}, publisher = {mathdoc}, volume = {304}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a14/} }
TY - JOUR AU - V. I. Maksimov TI - Tracking the Solution of a Nonlinear System with Partly Measured Coordinates of the State Vector JO - Informatics and Automation PY - 2019 SP - 235 EP - 251 VL - 304 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a14/ LA - ru ID - TRSPY_2019_304_a14 ER -
V. I. Maksimov. Tracking the Solution of a Nonlinear System with Partly Measured Coordinates of the State Vector. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 235-251. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a14/
[1] M. S. Blizorukova and V. I. Maksimov, “On an algorithm for tracking the motion of the reference system with aftereffect when only part of the coordinates is measured”, Diff. Eqns., 47:3 (2011), 412–418 | MR | Zbl
[2] N. N. Krasovskii, Control of a Dynamical System: The Problem of the Minimum of a Guaranteed Result, Nauka, Moscow, 1985 (in Russian)
[3] N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Nauka, Moscow, 1974 | MR | MR | Zbl
[4] Game-Theoretical Control Problems, Springer, New York, 1988 | MR | MR | Zbl
[5] A. V. Kryazhimskiy and V. I. Maksimov, “Resource-saving tracking problem with infinite time horizon”, Diff. Eqns., 47:7 (2011), 1004–1013 | MR | Zbl
[6] V. I. Maksimov, “The tracking of the trajectory of a dynamical system”, J. Appl. Math. Mech., 75:6 (2011), 667–674 | DOI | MR | Zbl
[7] V. I. Maksimov, “On tracking solutions of parabolic equations”, Russ. Math., 56:1 (2012), 35–42 | DOI | MR | Zbl
[8] V. I. Maksimov, “On a control algorithm for a linear system with measurements of a part of coordinates of the phase vector”, Proc. Steklov Inst. Math., 292, no. Suppl. 1, 2016, S197–S210 | DOI | MR | Zbl
[9] Maksimov V., “Game control problem for a phase field equation”, J. Optim. Theory Appl., 170:1 (2016), 294–307 | DOI | MR | Zbl
[10] Maksimov V., “Some problems of guaranteed control of the Schlögl and Fitzhugh–Nagumo systems”, Evol. Eqns. Control Theory, 6:4 (2017), 559–586 | DOI | MR | Zbl
[11] V. I. Maksimov and Yu. S. Osipov, “Infinite-horizon boundary control of distributed systems”, Comput. Math. Math. Phys., 56:1 (2016), 14–25 | DOI | MR | Zbl
[12] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, Amsterdam, 1995 | MR | Zbl
[13] Yu. S. Osipov, A. V. Kryazhimskii, and V. I. Maksimov, Methods of Dynamical Reconstruction of Inputs of Control Systems, Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2011 (in Russian)
[14] Yu. S. Osipov, F. P. Vasil'ev, and M. M. Potapov, Foundations of the Dynamical Regularization Method, Mosk. Gos. Univ., Moscow, 1999 (in Russian)
[15] A. A. Samarskii, Introduction to the Theory of Difference Schemes, Nauka, Moscow, 1971 (in Russian) | MR