Stable Functionals of Neutral-Type Dynamical Systems
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 221-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a controlled dynamical system under noisy conditions. Its motion is described by functional differential equations of neutral type in the form of J. Hale. A functional of the motion history is said to be stable with respect to this system if there exists a control strategy that guarantees the monotonicity of this functional for any noise. We study various nonlocal and infinitesimal conditions for the stability of functionals.
Keywords: differential games optimal control, coinvariant derivatives, directional derivatives, Hamilton–Jacobi equations, stable functionals.
@article{TRSPY_2019_304_a13,
     author = {N. Yu. Lukoyanov and A. R. Plaksin},
     title = {Stable {Functionals} of {Neutral-Type} {Dynamical} {Systems}},
     journal = {Informatics and Automation},
     pages = {221--234},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a13/}
}
TY  - JOUR
AU  - N. Yu. Lukoyanov
AU  - A. R. Plaksin
TI  - Stable Functionals of Neutral-Type Dynamical Systems
JO  - Informatics and Automation
PY  - 2019
SP  - 221
EP  - 234
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a13/
LA  - ru
ID  - TRSPY_2019_304_a13
ER  - 
%0 Journal Article
%A N. Yu. Lukoyanov
%A A. R. Plaksin
%T Stable Functionals of Neutral-Type Dynamical Systems
%J Informatics and Automation
%D 2019
%P 221-234
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a13/
%G ru
%F TRSPY_2019_304_a13
N. Yu. Lukoyanov; A. R. Plaksin. Stable Functionals of Neutral-Type Dynamical Systems. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 221-234. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a13/

[1] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[2] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer, Dordrecht, 1988 | MR | Zbl

[3] M. I. Gomoyunov, N. Yu. Lukoyanov, and A. R. Plaksin, “Existence of a value and a saddle point in positional differential games for neutral-type systems”, Proc. Steklov Inst. Math., 299, no. Suppl. 1, 2017, S37–S48 | MR | Zbl

[4] H. G. Guseinov, A. I. Subbotin, and V. N. Ushakov, “Derivatives for multivalued mappings with applications to game-theoretical problems of control”, Probl. Control Inf. Theory, 14 (1985), 155–167 | MR | Zbl

[5] Hale J., Theory of functional differential equations, Springer, New York, 1977 | MR | Zbl

[6] A. V. Kim, $i$-Smooth Analysis and Functional Differential Equations, Inst. Mat. Mekh., Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1996 (in Russian)

[7] N. N. Krasovskii, Some Problems of the Motion Stability Theory, Fizmatgiz, Moscow, 1959 | Zbl

[8] Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford Univ. Press, Stanford, CA, 1963 | Zbl

[9] N. N. Krasovskii, “On the problem of unifying differential games”, Sov. Math., Dokl., 17 (1976), 269–273 | MR

[10] N. N. Krasovskii, Control of a Dynamical System: The Problem of the Minimum of a Guaranteed Result, Nauka, Moscow, 1985 (in Russian)

[11] N. N. Krasovskii and N. Yu. Lukoyanov, “Equations of Hamilton–Jacobi type in hereditary systems: Minimax solutions”, Proc. Steklov Inst. Math., no. Suppl. 1, 2000, S136–S153 | MR | Zbl

[12] N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Nauka, Moscow, 1974 | Zbl

[13] Game-Theoretical Control Problems, Springer, New York, 1988 | Zbl

[14] N. Yu. Lukoyanov, “On optimality conditions for the guaranteed result in control problems for time-delay systems”, Proc. Steklov Inst. Math., 268, no. Suppl. 1, 2010, S175–S187 | DOI | MR | Zbl

[15] N. Yu. Lukoyanov, Hamilton–Jacobi Functional Equations and Control Problems with Hereditary Information, Ural. Fed. Univ., Yekaterinburg, 2011 (in Russian)

[16] N. Yu. Lukoyanov and A. R. Plaksin, “Minimax solutions of Hamilton–Jacobi functional equations for neutral-type systems”, Dokl. Math., 96:2 (2017), 445–448 | DOI | MR | Zbl

[17] Yu. S. Osipov, “A differential guidance game for systems with aftereffect”, J. Appl. Math. Mech., 35:1 (1971), 92–99 | DOI | MR | Zbl

[18] Yu. S. Osipov, “Differential games of systems with aftereffect”, Sov. Math., Dokl., 12 (1971), 262–266 | MR | Zbl

[19] A. R. Plaksin, “On Hamilton–Jacobi–Isaacs–Bellman equation for neutral type systems”, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki, 27:2 (2017), 222–237 | MR | Zbl

[20] L. S. Pontryagin, “The mathematical theory of optimal processes and differential games”, Proc. Steklov Inst. Math., 169, 1986, 123–159 | MR | Zbl

[21] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR | Zbl

[22] A. I. Subbotin, “A generalization of the basic equation of the theory of differential games”, Sov. Math., Dokl., 22 (1980), 358–362 | MR | Zbl

[23] A. I. Subbotin, Minimax Inequalities and Hamilton–Jacobi Equations, Nauka, Moscow, 1991 (in Russian)

[24] A. I. Subbotin, Generalized Solutions of First-Order PDEs: The Dynamical Optimization Perspective, Birkhäuser, Boston, 1995 | MR

[25] A. I. Subbotin and A. M. Taras'ev, “Conjugate derivatives of the value function of a differential game”, Sov. Math., Dokl., 32 (1985), 162–166 | MR | Zbl