Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_304_a13, author = {N. Yu. Lukoyanov and A. R. Plaksin}, title = {Stable {Functionals} of {Neutral-Type} {Dynamical} {Systems}}, journal = {Informatics and Automation}, pages = {221--234}, publisher = {mathdoc}, volume = {304}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a13/} }
N. Yu. Lukoyanov; A. R. Plaksin. Stable Functionals of Neutral-Type Dynamical Systems. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 221-234. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a13/
[1] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl
[2] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer, Dordrecht, 1988 | MR | Zbl
[3] M. I. Gomoyunov, N. Yu. Lukoyanov, and A. R. Plaksin, “Existence of a value and a saddle point in positional differential games for neutral-type systems”, Proc. Steklov Inst. Math., 299, no. Suppl. 1, 2017, S37–S48 | MR | Zbl
[4] H. G. Guseinov, A. I. Subbotin, and V. N. Ushakov, “Derivatives for multivalued mappings with applications to game-theoretical problems of control”, Probl. Control Inf. Theory, 14 (1985), 155–167 | MR | Zbl
[5] Hale J., Theory of functional differential equations, Springer, New York, 1977 | MR | Zbl
[6] A. V. Kim, $i$-Smooth Analysis and Functional Differential Equations, Inst. Mat. Mekh., Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1996 (in Russian)
[7] N. N. Krasovskii, Some Problems of the Motion Stability Theory, Fizmatgiz, Moscow, 1959 | Zbl
[8] Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford Univ. Press, Stanford, CA, 1963 | Zbl
[9] N. N. Krasovskii, “On the problem of unifying differential games”, Sov. Math., Dokl., 17 (1976), 269–273 | MR
[10] N. N. Krasovskii, Control of a Dynamical System: The Problem of the Minimum of a Guaranteed Result, Nauka, Moscow, 1985 (in Russian)
[11] N. N. Krasovskii and N. Yu. Lukoyanov, “Equations of Hamilton–Jacobi type in hereditary systems: Minimax solutions”, Proc. Steklov Inst. Math., no. Suppl. 1, 2000, S136–S153 | MR | Zbl
[12] N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Nauka, Moscow, 1974 | Zbl
[13] Game-Theoretical Control Problems, Springer, New York, 1988 | Zbl
[14] N. Yu. Lukoyanov, “On optimality conditions for the guaranteed result in control problems for time-delay systems”, Proc. Steklov Inst. Math., 268, no. Suppl. 1, 2010, S175–S187 | DOI | MR | Zbl
[15] N. Yu. Lukoyanov, Hamilton–Jacobi Functional Equations and Control Problems with Hereditary Information, Ural. Fed. Univ., Yekaterinburg, 2011 (in Russian)
[16] N. Yu. Lukoyanov and A. R. Plaksin, “Minimax solutions of Hamilton–Jacobi functional equations for neutral-type systems”, Dokl. Math., 96:2 (2017), 445–448 | DOI | MR | Zbl
[17] Yu. S. Osipov, “A differential guidance game for systems with aftereffect”, J. Appl. Math. Mech., 35:1 (1971), 92–99 | DOI | MR | Zbl
[18] Yu. S. Osipov, “Differential games of systems with aftereffect”, Sov. Math., Dokl., 12 (1971), 262–266 | MR | Zbl
[19] A. R. Plaksin, “On Hamilton–Jacobi–Isaacs–Bellman equation for neutral type systems”, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki, 27:2 (2017), 222–237 | MR | Zbl
[20] L. S. Pontryagin, “The mathematical theory of optimal processes and differential games”, Proc. Steklov Inst. Math., 169, 1986, 123–159 | MR | Zbl
[21] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR | Zbl
[22] A. I. Subbotin, “A generalization of the basic equation of the theory of differential games”, Sov. Math., Dokl., 22 (1980), 358–362 | MR | Zbl
[23] A. I. Subbotin, Minimax Inequalities and Hamilton–Jacobi Equations, Nauka, Moscow, 1991 (in Russian)
[24] A. I. Subbotin, Generalized Solutions of First-Order PDEs: The Dynamical Optimization Perspective, Birkhäuser, Boston, 1995 | MR
[25] A. I. Subbotin and A. M. Taras'ev, “Conjugate derivatives of the value function of a differential game”, Sov. Math., Dokl., 32 (1985), 162–166 | MR | Zbl