Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_304_a12, author = {Yu. S. Ledyaev}, title = {Criteria for {Convexity} of {Closed} {Sets} in {Banach} {Spaces}}, journal = {Informatics and Automation}, pages = {205--220}, publisher = {mathdoc}, volume = {304}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a12/} }
Yu. S. Ledyaev. Criteria for Convexity of Closed Sets in Banach Spaces. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 205-220. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a12/
[1] Ben-El-Mechaiekh H., Kryszewski W., “Equilibria of set-valued maps on nonconvex domains”, Trans. Amer. Math. Soc., 349:10 (1997), 4159–4179 | DOI | MR | Zbl
[2] N. A. Bobylev, S. V. Emel'yanov, and S. K. Korovin, “Convexity of images of convex sets under smooth maps”, Comput. Math. Model., 15:3 (2004), 213–222 | DOI | MR | Zbl
[3] Borwein J.M., Giles J.R., “The proximal normal formula in Banach space”, Trans. Amer. Math. Soc., 302:1 (1987), 371–381 | DOI | MR | Zbl
[4] Borwein J.M., Strojwas H.M., “Proximal analysis and boundaries of closed sets in Banach space. II: Applications”, Can. J. Math., 39:2 (1987), 428–472 | DOI | MR | Zbl
[5] Clarke F.H., Optimization and nonsmooth analysis, Can. Math. Soc. Ser. Monogr. Adv. Texts, J. Wiley Sons, New York, 1983 | MR | Zbl
[6] Clarke F.H., Methods of dynamic and nonsmooth optimization, CBMS–NSF Reg. Conf. Ser. Appl. Math., 57, SIAM, Philadelphia, PA, 1989 | MR | Zbl
[7] Clarke F.H., Necessary conditions in dynamic optimization, Mem. AMS, 173, no. 816, Amer. Math. Soc., Providence, RI, 2005 | MR
[8] Clarke F.H., Ledyaev Yu.S., Stern R.J., “Fixed points and equilibria in nonconvex sets”, Nonlinear Anal. Theory Methods Appl., 25:2 (1995), 145–161 | DOI | MR | Zbl
[9] Clarke F.H., Ledyaev Yu.S., Stern R.J., “Fixed point theory via nonsmooth analysis”, Recent developments in optimization theory and nonlinear analysis, AMS/IMU Spec. Sess. (Jerusalem, 1995), Contemp. Math., 204, Amer. Math. Soc., Providence, RI, 1997, 93–106 | DOI | MR | Zbl
[10] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth analysis and control theory, Grad. Texts Math., 178, Springer, New York, 1998 | MR | Zbl
[11] S. V. Emel'yanov, S. K. Korovin, and N. A. Bobylev, “On the convexity of the images of convex sets under smooth mappings”, Dokl. Math., 66:1 (2002), 55–57 | MR | Zbl
[12] Klee V.L., \textup {Jr., “} Convex sets in linear spaces”, Duke Math. J., 18 (1951), 443–466 | DOI | MR | Zbl
[13] Lebourg G., “Review of the paper “The convexity principle and its applications” by B.T. Polyak”, Math. Rev., 2004 | MR
[14] Ledyaev Yu.S., Zhu Q.J., “Implicit multifunction theorems”, Set-Valued Anal., 7:3 (1999), 209–238 | DOI | MR | Zbl
[15] Loewen P.D., “The proximal normal formula in Hilbert space”, Nonlinear Anal. Theory Methods Appl., 11:9 (1987), 979–995 | DOI | MR | Zbl
[16] Polyak B.T., “Convexity of nonlinear image of a small ball with applications to optimization”, Set-Valued Anal., 9:1-2 (2001), 159–168 | DOI | MR | Zbl
[17] Polyak B.T., “The convexity principle and its applications”, Bull. Braz. Math. Soc. (N.S.), 34:1 (2003), 59–75 | DOI | MR | Zbl
[18] G. Reißig, “Convexity of reachable sets of nonlinear ordinary differential equations”, Autom. Remote Control, 68:9 (2007), 1527–1543 | DOI | MR | Zbl
[19] Treiman J.S., “Characterization of Clarke's tangent and normal cones in finite and infinite dimensions”, Nonlinear Anal. Theory Methods Appl., 7:7 (1983), 771–783 | DOI | MR | Zbl
[20] Uderzo A., “On the Polyak convexity principle and its application to variational analysis”, Nonlinear Anal. Theory Methods Appl., 91 (2013), 60–71 | DOI | MR | Zbl
[21] Uderzo A., “Convexity of the images of small balls through nonconvex multifunctions”, Nonlinear Anal. Theory Methods Appl., 128 (2015), 348–364 | DOI | MR | Zbl
[22] S. A. Vakhrameev, “A note on convexity in smooth nonlinear systems”, J. Math. Sci., 100:5 (2000), 2470–2490 | DOI | MR