On a Mathematical Model of Biological Self-Organization
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 174-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of two generalized Hutchinson's equations coupled by linear diffusion terms is considered. It is established that for an appropriate choice of parameters, the system has a stable relaxation cycle whose components turn into each other under a certain phase shift. A number of additional properties of this cycle are presented that allow one to interpret it as a self-organization mode.
@article{TRSPY_2019_304_a11,
     author = {A. Yu. Kolesov and N. Kh. Rozov and V. A. Sadovnichii},
     title = {On a {Mathematical} {Model} of {Biological} {Self-Organization}},
     journal = {Informatics and Automation},
     pages = {174--204},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a11/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
AU  - V. A. Sadovnichii
TI  - On a Mathematical Model of Biological Self-Organization
JO  - Informatics and Automation
PY  - 2019
SP  - 174
EP  - 204
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a11/
LA  - ru
ID  - TRSPY_2019_304_a11
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%A V. A. Sadovnichii
%T On a Mathematical Model of Biological Self-Organization
%J Informatics and Automation
%D 2019
%P 174-204
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a11/
%G ru
%F TRSPY_2019_304_a11
A. Yu. Kolesov; N. Kh. Rozov; V. A. Sadovnichii. On a Mathematical Model of Biological Self-Organization. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 174-204. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a11/

[1] Van der Pol B., “On “relaxation-oscillations””, Philos. Mag. J. Sci. Ser. 7., 2 (1926), 978–992 | DOI | Zbl

[2] N. A. Zheleztsov, “Self-modulation of self-oscillations of a vacuum-tube oscillator with automatic bias in the cathode loop”, Zh. Tekh. Fiz., 18:4 (1948), 495–509

[3] E. F. Mishchenko and L. S. Pontryagin, “Periodic solutions of systems of differential equations that are close to discontinuous solutions”, Dokl. Akad. Nauk SSSR, 102:5 (1955), 889–891

[4] E. F. Mishchenko and N. Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, Plenum, New York, 1980 | MR | Zbl

[5] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, and N. Kh. Rozov, Periodic Motions and Bifurcation Processes in Singularly Perturbed Systems, Fizmatlit, Moscow, 1995 (in Russian) | MR

[6] A. Yu. Kolesov and Yu. S. Kolesov, “Relaxation Oscillations in Mathematical Models of Ecology”, Tr. Mat. Inst. Steklova, 199, Nauka, Moscow, 1993

[7] Hutchinson G.E., “Circular causal systems in ecology”, Ann. N.Y. Acad. Sci., 50:4 (1948), 221–246 | DOI

[8] A. Yu. Kolesov and N. Kh. Rozov, “Discrete autowaves in systems of delay differential–difference equations in ecology”, Proc. Steklov Inst. Math., 277 (2012), 94–136 | DOI | MR | Zbl

[9] S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Relaxation self-oscillations in Hopfield networks with delay”, Izv. Math., 77:2 (2013), 271–312 | DOI | DOI | MR | Zbl

[10] S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Periodic traveling-wave-type solutions in circular chains of unidirectionally coupled equations”, Theor. Math. Phys., 175:1 (2013), 499–517 | DOI | DOI | MR | Zbl

[11] S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “The buffer phenomenon in ring-like chains of unidirectionally connected generators”, Izv. Math., 78:4 (2014), 708–743 | DOI | DOI | MR | Zbl