Fractal Theory of Saturn's Ring. II: Electromagnetic Phenomena
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 167-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is a continuation of the author's previous paper of 2015. It deals with electromagnetic phenomena in a model of a flat two-dimensional ring with a given law of differential rotation. The reasons of high electromagnetic activity in Saturn's ring are discussed. In parallel with the discussion, it is shown that similar reasons can clarify other processes such as the charging of thunderclouds. New aspects in the theory of magnetic fields of planets are also proposed.
@article{TRSPY_2019_304_a10,
     author = {M. I. Zelikin},
     title = {Fractal {Theory} of {Saturn's} {Ring.} {II:} {Electromagnetic} {Phenomena}},
     journal = {Informatics and Automation},
     pages = {167--173},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a10/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - Fractal Theory of Saturn's Ring. II: Electromagnetic Phenomena
JO  - Informatics and Automation
PY  - 2019
SP  - 167
EP  - 173
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a10/
LA  - ru
ID  - TRSPY_2019_304_a10
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T Fractal Theory of Saturn's Ring. II: Electromagnetic Phenomena
%J Informatics and Automation
%D 2019
%P 167-173
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a10/
%G ru
%F TRSPY_2019_304_a10
M. I. Zelikin. Fractal Theory of Saturn's Ring. II: Electromagnetic Phenomena. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 167-173. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a10/

[1] Couette M., “Études sur le frottement des liquides”, Ann. chim. phys., 21 (1890), 433–510

[2] A. A. Eichenwald, Electricity, Gosizdat, Moscow, 1927 (in Russian)

[3] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, v. 2, Mainly Electromagnetism and Matter, Addison Wesley, Reading, MA, 1965 | MR | Zbl

[4] Glatzmaier G.A., Roberts P.H., “A three-dimensional self-consistent computer simulation of a geomagnetic field reversal”, Nature, 377 (1995), 203–209 | DOI

[5] V. V. Kuznetsov, Physics of the Earth and the Solar System: Models of Generation and Evolution, Inst. Geol. Geofiz., Novosibirsk, 1990 (in Russian)

[6] Kuznetsov V.V., “A model of virtual geomagnetic pole motion during reversals”, Phys. Earth Planet. Inter., 115:2 (1999), 173–179 | DOI

[7] Roberts P.H., Glatzmaier G.A., “Geodynamo theory and simulations”, Rev. Mod. Phys., 72:4 (2000), 1081–1123 | DOI

[8] Sommerfeld A., Bethe H., “Electronentheorie der Metalle”, Aufbau der zusammenhängenden Materie, v. 2, Handbuch der Physik, 24, eds. by H. Geiger, K. Scheel, Springer, Berlin, 1933, 333–622

[9] M. I. Zelikin, “Fractal theory of Saturn's ring”, Proc. Steklov Inst. Math., 291, 2015, 87–101 | DOI | MR | Zbl