Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_304_a10, author = {M. I. Zelikin}, title = {Fractal {Theory} of {Saturn's} {Ring.} {II:} {Electromagnetic} {Phenomena}}, journal = {Informatics and Automation}, pages = {167--173}, publisher = {mathdoc}, volume = {304}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a10/} }
M. I. Zelikin. Fractal Theory of Saturn's Ring. II: Electromagnetic Phenomena. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 167-173. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a10/
[1] Couette M., “Études sur le frottement des liquides”, Ann. chim. phys., 21 (1890), 433–510
[2] A. A. Eichenwald, Electricity, Gosizdat, Moscow, 1927 (in Russian)
[3] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, v. 2, Mainly Electromagnetism and Matter, Addison Wesley, Reading, MA, 1965 | MR | Zbl
[4] Glatzmaier G.A., Roberts P.H., “A three-dimensional self-consistent computer simulation of a geomagnetic field reversal”, Nature, 377 (1995), 203–209 | DOI
[5] V. V. Kuznetsov, Physics of the Earth and the Solar System: Models of Generation and Evolution, Inst. Geol. Geofiz., Novosibirsk, 1990 (in Russian)
[6] Kuznetsov V.V., “A model of virtual geomagnetic pole motion during reversals”, Phys. Earth Planet. Inter., 115:2 (1999), 173–179 | DOI
[7] Roberts P.H., Glatzmaier G.A., “Geodynamo theory and simulations”, Rev. Mod. Phys., 72:4 (2000), 1081–1123 | DOI
[8] Sommerfeld A., Bethe H., “Electronentheorie der Metalle”, Aufbau der zusammenhängenden Materie, v. 2, Handbuch der Physik, 24, eds. by H. Geiger, K. Scheel, Springer, Berlin, 1933, 333–622
[9] M. I. Zelikin, “Fractal theory of Saturn's ring”, Proc. Steklov Inst. Math., 291, 2015, 87–101 | DOI | MR | Zbl