Weight-almost greedy bases
Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 120-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of a weight-almost greedy basis and show that a basis for a real Banach space is $w$-almost greedy if and only if it is both quasi-greedy and $w$-democratic. We also introduce the notion of a weight-semi-greedy basis and show that a $w$-almost greedy basis is $w$-semi-greedy and that the converse holds if the Banach space has finite cotype.
@article{TRSPY_2018_303_a9,
     author = {S. J. Dilworth and D. Kutzarova and V. N. Temlyakov and B. Wallis},
     title = {Weight-almost greedy bases},
     journal = {Informatics and Automation},
     pages = {120--141},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a9/}
}
TY  - JOUR
AU  - S. J. Dilworth
AU  - D. Kutzarova
AU  - V. N. Temlyakov
AU  - B. Wallis
TI  - Weight-almost greedy bases
JO  - Informatics and Automation
PY  - 2018
SP  - 120
EP  - 141
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a9/
LA  - ru
ID  - TRSPY_2018_303_a9
ER  - 
%0 Journal Article
%A S. J. Dilworth
%A D. Kutzarova
%A V. N. Temlyakov
%A B. Wallis
%T Weight-almost greedy bases
%J Informatics and Automation
%D 2018
%P 120-141
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a9/
%G ru
%F TRSPY_2018_303_a9
S. J. Dilworth; D. Kutzarova; V. N. Temlyakov; B. Wallis. Weight-almost greedy bases. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 120-141. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a9/

[1] Berná P. M., Blasco Ó., “The best $m$-term approximation with respect to polynomials with constant coefficients”, Anal. math., 43:2 (2017), 119–132 | DOI | MR | Zbl

[2] Cohen A., DeVore R. A., Hochmuth R., “Restricted nonlinear approximation”, Constr. Approx., 16:1 (2000), 85–113 | DOI | MR | Zbl

[3] Dilworth S. J., Kalton N. J., Kutzarova D., “On the existence of almost greedy bases in Banach spaces”, Stud. math., 159:1 (2003), 67–101 | DOI | MR | Zbl

[4] Dilworth S. J., Kalton N. J., Kutzarova D., Temlyakov V. N., “The thresholding greedy algorithm, greedy bases, and duality”, Constr. Approx., 19:4 (2003), 575–597 | DOI | MR | Zbl

[5] Dilworth S. J., Soto-Bajo M., Temlyakov V. N., Quasi-greedy bases and Lebesgue-type inequalities, IMI Preprint No 02, Univ. South Carol., Columbia, SC, 2012 | MR

[6] Freeman D., Odell E., Sari B., Zheng B., On spreading sequences and asymptotic structures, E-print, 2016, arXiv: 1607.03587v1 [math.FA] | MR

[7] Garrigós G., Hernándes E., Oikhberg T., “Lebesgue-type inequalities for quasi-greedy bases”, Constr. Approx., 38:3 (2013), 447–470 | DOI | MR | Zbl

[8] Kerkyacharian G., Picard D., Temlyakov V. N., “Some inequalities for the tensor product of greedy bases and weight-greedy bases”, East J. Approx., 12:1 (2006), 103–118 | MR

[9] Konyagin S. V., Temlyakov V. N., “A remark on greedy approximation in Banach spaces”, East J. Approx., 5:3 (1999), 365–379 | MR | Zbl

[10] Temlyakov V., Greedy approximation, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl

[11] Temlyakov V., Sparse approximation with bases, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2015 | DOI | MR | Zbl

[12] Wojtaszczyk P., “Greedy algorithm for general biorthogonal systems”, J. Approx. Theory, 107:2 (2000), 293–314 | DOI | MR | Zbl