Weight-almost greedy bases
Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 120-141

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of a weight-almost greedy basis and show that a basis for a real Banach space is $w$-almost greedy if and only if it is both quasi-greedy and $w$-democratic. We also introduce the notion of a weight-semi-greedy basis and show that a $w$-almost greedy basis is $w$-semi-greedy and that the converse holds if the Banach space has finite cotype.
@article{TRSPY_2018_303_a9,
     author = {S. J. Dilworth and D. Kutzarova and V. N. Temlyakov and B. Wallis},
     title = {Weight-almost greedy bases},
     journal = {Informatics and Automation},
     pages = {120--141},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a9/}
}
TY  - JOUR
AU  - S. J. Dilworth
AU  - D. Kutzarova
AU  - V. N. Temlyakov
AU  - B. Wallis
TI  - Weight-almost greedy bases
JO  - Informatics and Automation
PY  - 2018
SP  - 120
EP  - 141
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a9/
LA  - ru
ID  - TRSPY_2018_303_a9
ER  - 
%0 Journal Article
%A S. J. Dilworth
%A D. Kutzarova
%A V. N. Temlyakov
%A B. Wallis
%T Weight-almost greedy bases
%J Informatics and Automation
%D 2018
%P 120-141
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a9/
%G ru
%F TRSPY_2018_303_a9
S. J. Dilworth; D. Kutzarova; V. N. Temlyakov; B. Wallis. Weight-almost greedy bases. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 120-141. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a9/