Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm
Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 87-115
Voir la notice de l'article provenant de la source Math-Net.Ru
In 1939 P. Turán started to derive lower estimations on the norm of the derivatives of polynomials of (maximum) norm $1$ on $\mathbb I:=[-1,1]$ (interval) and $\mathbb D:=\{z\in \mathbb C: |z|\le 1\}$ (disk) under the normalization condition that the zeroes of the polynomial in question all lie in $\mathbb I$ or $\mathbb D$, respectively. For the maximum norm he found that with $n:=\deg p$ tending to infinity, the precise growth order of the minimal possible derivative norm is $\sqrt {n}$ for $\mathbb I$ and $n$ for $\mathbb D$. J. Erőd continued the work of Turán considering other domains. Finally, about a decade ago the growth of the minimal possible $\infty $-norm of the derivative was proved to be of order $n$ for all compact convex domains. Although Turán himself gave comments about the above oscillation question in $L^q$ norms, till recently results were known only for $\mathbb D$ and $\mathbb I$. Recently, we have found order $n$ lower estimations for several general classes of compact convex domains, and conjectured that even for arbitrary convex domains the growth order of this quantity should be $n$. Now we prove that in $L^q$ norm the oscillation order is at least $n/\kern -1pt\log n$ for all compact convex domains.
Keywords:
Bernstein–Markov inequalities, Turán's lower estimate of derivative norm, logarithmic derivative, Chebyshev constant, transfinite diameter, capacity, minimal width
Mots-clés : convex domains, outer angle.
Mots-clés : convex domains, outer angle.
@article{TRSPY_2018_303_a7,
author = {P. Yu. Glazyrina and Sz. Gy. R\'ev\'esz},
title = {Tur\'an--Er\H od type converse {Markov} inequalities on general convex domains of the plane in the boundary $L^q$ norm},
journal = {Informatics and Automation},
pages = {87--115},
publisher = {mathdoc},
volume = {303},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a7/}
}
TY - JOUR AU - P. Yu. Glazyrina AU - Sz. Gy. Révész TI - Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm JO - Informatics and Automation PY - 2018 SP - 87 EP - 115 VL - 303 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a7/ LA - ru ID - TRSPY_2018_303_a7 ER -
%0 Journal Article %A P. Yu. Glazyrina %A Sz. Gy. Révész %T Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm %J Informatics and Automation %D 2018 %P 87-115 %V 303 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a7/ %G ru %F TRSPY_2018_303_a7
P. Yu. Glazyrina; Sz. Gy. Révész. Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 87-115. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a7/