Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_303_a7, author = {P. Yu. Glazyrina and Sz. Gy. R\'ev\'esz}, title = {Tur\'an--Er\H od type converse {Markov} inequalities on general convex domains of the plane in the boundary $L^q$ norm}, journal = {Informatics and Automation}, pages = {87--115}, publisher = {mathdoc}, volume = {303}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a7/} }
TY - JOUR AU - P. Yu. Glazyrina AU - Sz. Gy. Révész TI - Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm JO - Informatics and Automation PY - 2018 SP - 87 EP - 115 VL - 303 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a7/ LA - ru ID - TRSPY_2018_303_a7 ER -
%0 Journal Article %A P. Yu. Glazyrina %A Sz. Gy. Révész %T Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm %J Informatics and Automation %D 2018 %P 87-115 %V 303 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a7/ %G ru %F TRSPY_2018_303_a7
P. Yu. Glazyrina; Sz. Gy. Révész. Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 87-115. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a7/