Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm
Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 87-115

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1939 P. Turán started to derive lower estimations on the norm of the derivatives of polynomials of (maximum) norm $1$ on $\mathbb I:=[-1,1]$ (interval) and $\mathbb D:=\{z\in \mathbb C: |z|\le 1\}$ (disk) under the normalization condition that the zeroes of the polynomial in question all lie in $\mathbb I$ or $\mathbb D$, respectively. For the maximum norm he found that with $n:=\deg p$ tending to infinity, the precise growth order of the minimal possible derivative norm is $\sqrt {n}$ for $\mathbb I$ and $n$ for $\mathbb D$. J. Erőd continued the work of Turán considering other domains. Finally, about a decade ago the growth of the minimal possible $\infty $-norm of the derivative was proved to be of order $n$ for all compact convex domains. Although Turán himself gave comments about the above oscillation question in $L^q$ norms, till recently results were known only for $\mathbb D$ and $\mathbb I$. Recently, we have found order $n$ lower estimations for several general classes of compact convex domains, and conjectured that even for arbitrary convex domains the growth order of this quantity should be $n$. Now we prove that in $L^q$ norm the oscillation order is at least $n/\kern -1pt\log n$ for all compact convex domains.
Keywords: Bernstein–Markov inequalities, Turán's lower estimate of derivative norm, logarithmic derivative, Chebyshev constant, transfinite diameter, capacity, minimal width
Mots-clés : convex domains, outer angle.
@article{TRSPY_2018_303_a7,
     author = {P. Yu. Glazyrina and Sz. Gy. R\'ev\'esz},
     title = {Tur\'an--Er\H od type converse {Markov} inequalities on general convex domains of the plane in the boundary $L^q$ norm},
     journal = {Informatics and Automation},
     pages = {87--115},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a7/}
}
TY  - JOUR
AU  - P. Yu. Glazyrina
AU  - Sz. Gy. Révész
TI  - Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm
JO  - Informatics and Automation
PY  - 2018
SP  - 87
EP  - 115
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a7/
LA  - ru
ID  - TRSPY_2018_303_a7
ER  - 
%0 Journal Article
%A P. Yu. Glazyrina
%A Sz. Gy. Révész
%T Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm
%J Informatics and Automation
%D 2018
%P 87-115
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a7/
%G ru
%F TRSPY_2018_303_a7
P. Yu. Glazyrina; Sz. Gy. Révész. Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 87-115. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a7/