On distribution of elements of subgroups in arithmetic progressions modulo a prime
Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 59-66

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb F_p$ be the field of residue classes modulo a large prime number $p$. We prove that if $\mathcal G$ is a subgroup of the multiplicative group $\mathbb F_p^*$ and if $\mathcal I\subset \mathbb F_p$ is an arithmetic progression, then $|\mathcal G\cap \mathcal I| = (1+o(1))|\mathcal G|\kern 1pt|\mathcal I|/p + R$, where $|R|\bigl (|\mathcal I|^{1/2}+|\mathcal G|^{1/2}+|\mathcal I|^{1/2}|\mathcal G|^{3/8}p^{-1/8}\bigr )p^{o(1)}$. We use this bound to show that the number of solutions to the congruence $x^n\equiv \lambda \pmod p$, $x\in \mathbb N$, $L$, is at most $p^{1/3-1/390+o(1)}$ uniformly over positive integers $n$, $\lambda $ and $L$. The proofs are based on results and arguments of Cilleruelo and the author (2014), Murphy, Rudnev, Shkredov and Shteinikov (2017) and Bourgain, Konyagin, Shparlinski and the author (2013).
@article{TRSPY_2018_303_a5,
     author = {M. Z. Garaev},
     title = {On distribution of elements of subgroups in arithmetic progressions modulo a prime},
     journal = {Informatics and Automation},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a5/}
}
TY  - JOUR
AU  - M. Z. Garaev
TI  - On distribution of elements of subgroups in arithmetic progressions modulo a prime
JO  - Informatics and Automation
PY  - 2018
SP  - 59
EP  - 66
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a5/
LA  - ru
ID  - TRSPY_2018_303_a5
ER  - 
%0 Journal Article
%A M. Z. Garaev
%T On distribution of elements of subgroups in arithmetic progressions modulo a prime
%J Informatics and Automation
%D 2018
%P 59-66
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a5/
%G ru
%F TRSPY_2018_303_a5
M. Z. Garaev. On distribution of elements of subgroups in arithmetic progressions modulo a prime. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 59-66. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a5/