On distribution of elements of subgroups in arithmetic progressions modulo a prime
Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 59-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb F_p$ be the field of residue classes modulo a large prime number $p$. We prove that if $\mathcal G$ is a subgroup of the multiplicative group $\mathbb F_p^*$ and if $\mathcal I\subset \mathbb F_p$ is an arithmetic progression, then $|\mathcal G\cap \mathcal I| = (1+o(1))|\mathcal G|\kern 1pt|\mathcal I|/p + R$, where $|R|\bigl (|\mathcal I|^{1/2}+|\mathcal G|^{1/2}+|\mathcal I|^{1/2}|\mathcal G|^{3/8}p^{-1/8}\bigr )p^{o(1)}$. We use this bound to show that the number of solutions to the congruence $x^n\equiv \lambda \pmod p$, $x\in \mathbb N$, $L$, is at most $p^{1/3-1/390+o(1)}$ uniformly over positive integers $n$, $\lambda $ and $L$. The proofs are based on results and arguments of Cilleruelo and the author (2014), Murphy, Rudnev, Shkredov and Shteinikov (2017) and Bourgain, Konyagin, Shparlinski and the author (2013).
@article{TRSPY_2018_303_a5,
     author = {M. Z. Garaev},
     title = {On distribution of elements of subgroups in arithmetic progressions modulo a prime},
     journal = {Informatics and Automation},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a5/}
}
TY  - JOUR
AU  - M. Z. Garaev
TI  - On distribution of elements of subgroups in arithmetic progressions modulo a prime
JO  - Informatics and Automation
PY  - 2018
SP  - 59
EP  - 66
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a5/
LA  - ru
ID  - TRSPY_2018_303_a5
ER  - 
%0 Journal Article
%A M. Z. Garaev
%T On distribution of elements of subgroups in arithmetic progressions modulo a prime
%J Informatics and Automation
%D 2018
%P 59-66
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a5/
%G ru
%F TRSPY_2018_303_a5
M. Z. Garaev. On distribution of elements of subgroups in arithmetic progressions modulo a prime. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 59-66. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a5/

[1] Balog A., Broughan K. A., Shparlinski I. E., “On the number of solutions of exponential congruences”, Acta arith., 148:1 (2011), 93–103 | DOI | MR | Zbl

[2] Bourgain J., Konyagin S. V., Shparlinski I. E., “Product sets of rationals, multiplicative translates of subgroups in residue rings, and fixed points of the discrete logarithm”, Int. Math. Res. Not., 2008 (2008), rnn090 | MR | Zbl

[3] J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, “On congruences with products of variables from short intervals and applications”, Proc. Steklov Inst. Math., 280 (2013), 61–90 | DOI | MR | Zbl

[4] Cilleruelo J., Garaev M. Z., “Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime and applications”, Math. Proc. Cambridge Philos. Soc., 160:3 (2016), 477–494 | DOI | MR | Zbl

[5] Cilleruelo J., Garaev M. Z., “The congruence $x^x\equiv \lambda \pmod p$”, Proc. Amer. Math. Soc., 144:6 (2016), 2411–2418 | DOI | MR | Zbl

[6] Konyagin S. V., Shparlinski I. E., Character sums with exponential functions and their applications, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[7] Kurlberg P., Luca F., Shparlinski I. E., “On the fixed points of the map $x\to x^x$ modulo a prime”, Math. Res. Lett., 22:1 (2015), 141–168 | DOI | MR | Zbl

[8] Montgomery H. L., Ten lectures on the interface between analytic number theory and harmonic analysis, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[9] Murphy B., Rudnev M., Shkredov I. D., Shteinikov Yu. N., On the few products, many sums problem, E-print, 2017, arXiv: 1712.00410v1 [math.CO]

[10] Shkredov I. D., “Some new inequalities in additive combinatorics”, Moscow J. Comb. Number Theory, 3:3–4 (2013), 189–239 | MR | Zbl

[11] Yu. N. Shteinikov, “Estimates of trigonometric sums over subgroups and some of their applications”, Math. Notes, 98:4 (2015), 667–684 | DOI | DOI | MR | Zbl

[12] I. M. Vinogradov, An Introduction to the Theory of Numbers, Pergamon Press, London, 1955 | MR | MR