Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_303_a3, author = {P. A. Borodin}, title = {Density of sums of shifts of a single vector in sequence spaces}, journal = {Informatics and Automation}, pages = {39--44}, publisher = {mathdoc}, volume = {303}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a3/} }
P. A. Borodin. Density of sums of shifts of a single vector in sequence spaces. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 39-44. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a3/
[1] Rudin W., Fourier analysis on groups, Interscience Publ., New York, 1962 | MR | Zbl
[2] Wiener N., “Tauberian theorems”, Ann. Math. Ser. 2, 33 (1932), 1–100 | DOI | MR
[3] P. A. Borodin, “Density of a semigroup in a Banach space”, Izv. Math., 78:6 (2014), 1079–1104 | DOI | DOI | MR | Zbl
[4] Borodin P. A., Konyagin S. V., “Convergence to zero of exponential sums with positive integer coefficients and approximation by sums of shifts of a single function on the line”, Anal. math., 44:2 (2018), 163–183 | DOI | MR | Zbl
[5] P. A. Borodin, “Approximation by sums of shifts of a single function on the circle”, Izv. Math., 81:6 (2017), 1080–1094 | DOI | DOI | MR | Zbl
[6] S. Ja. Al'per, I. Ju. Vinogradova, “On approximation in the mean on curves in the complex plane by polynomials with integer coefficients”, Math. USSR, Izv., 4:3 (1970), 551–567 | DOI | Zbl
[7] E. Aparisio Bernardo, “On some properties of polynomials with integral coefficients and on approximation of functions in the mean by polynomials with integral coefficients”, Izv. Akad. Nauk SSSR, Ser. Mat., 19:5 (1955), 303–318 | MR | Zbl
[8] A. O. Gel'fond, “On uniform approximations by polynomials with integral rational coefficients”, Usp. Mat. Nauk, 10:1 (1955), 41–65 | MR | Zbl