Density of sums of shifts of a single vector in sequence spaces
Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 39-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that in the real space $l_2(\mathbb Z)$ of two-sided sequences there is an element such that the sums of its shifts are dense in all real spaces $l_p(\mathbb Z)$, $2\le p\infty $, as well as in the real space $c_0(\mathbb Z)$.
Keywords: shift, two-sided sequences, approximation
Mots-clés : Fourier coefficients.
@article{TRSPY_2018_303_a3,
     author = {P. A. Borodin},
     title = {Density of sums of shifts of a single vector in sequence spaces},
     journal = {Informatics and Automation},
     pages = {39--44},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a3/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Density of sums of shifts of a single vector in sequence spaces
JO  - Informatics and Automation
PY  - 2018
SP  - 39
EP  - 44
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a3/
LA  - ru
ID  - TRSPY_2018_303_a3
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Density of sums of shifts of a single vector in sequence spaces
%J Informatics and Automation
%D 2018
%P 39-44
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a3/
%G ru
%F TRSPY_2018_303_a3
P. A. Borodin. Density of sums of shifts of a single vector in sequence spaces. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 39-44. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a3/

[1] Rudin W., Fourier analysis on groups, Interscience Publ., New York, 1962 | MR | Zbl

[2] Wiener N., “Tauberian theorems”, Ann. Math. Ser. 2, 33 (1932), 1–100 | DOI | MR

[3] P. A. Borodin, “Density of a semigroup in a Banach space”, Izv. Math., 78:6 (2014), 1079–1104 | DOI | DOI | MR | Zbl

[4] Borodin P. A., Konyagin S. V., “Convergence to zero of exponential sums with positive integer coefficients and approximation by sums of shifts of a single function on the line”, Anal. math., 44:2 (2018), 163–183 | DOI | MR | Zbl

[5] P. A. Borodin, “Approximation by sums of shifts of a single function on the circle”, Izv. Math., 81:6 (2017), 1080–1094 | DOI | DOI | MR | Zbl

[6] S. Ja. Al'per, I. Ju. Vinogradova, “On approximation in the mean on curves in the complex plane by polynomials with integer coefficients”, Math. USSR, Izv., 4:3 (1970), 551–567 | DOI | Zbl

[7] E. Aparisio Bernardo, “On some properties of polynomials with integral coefficients and on approximation of functions in the mean by polynomials with integral coefficients”, Izv. Akad. Nauk SSSR, Ser. Mat., 19:5 (1955), 303–318 | MR | Zbl

[8] A. O. Gel'fond, “On uniform approximations by polynomials with integral rational coefficients”, Usp. Mat. Nauk, 10:1 (1955), 41–65 | MR | Zbl