On the size of the quotient of two subsets of positive integers
Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 279-287

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a nontrivial lower bound for the size of the set $A/B$, where $A$ and $B$ are subsets of the interval $[1,Q]$.
Keywords: integers, divisibility, energy of sets.
@article{TRSPY_2018_303_a19,
     author = {Yu. N. Shteinikov},
     title = {On the size of the quotient of two subsets of positive integers},
     journal = {Informatics and Automation},
     pages = {279--287},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a19/}
}
TY  - JOUR
AU  - Yu. N. Shteinikov
TI  - On the size of the quotient of two subsets of positive integers
JO  - Informatics and Automation
PY  - 2018
SP  - 279
EP  - 287
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a19/
LA  - ru
ID  - TRSPY_2018_303_a19
ER  - 
%0 Journal Article
%A Yu. N. Shteinikov
%T On the size of the quotient of two subsets of positive integers
%J Informatics and Automation
%D 2018
%P 279-287
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a19/
%G ru
%F TRSPY_2018_303_a19
Yu. N. Shteinikov. On the size of the quotient of two subsets of positive integers. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 279-287. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a19/