Uniformly convergent Fourier series and multiplication of functions
Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 186-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $U(\mathbb T)$ be the space of all continuous functions on the circle $\mathbb T$ whose Fourier series converges uniformly. Salem's well-known example shows that a product of two functions in $U(\mathbb T)$ does not always belong to $U(\mathbb T)$ even if one of the factors belongs to the Wiener algebra $A(\mathbb T)$. In this paper we consider pointwise multipliers of the space $U(\mathbb T)$, i.e., the functions $m$ such that $mf\in U(\mathbb T)$ whenever $f\in U(\mathbb T)$. We present certain sufficient conditions for a function to be a multiplier and also obtain some Salem-type results.
Keywords: uniformly convergent Fourier series, function spaces, multiplication operators.
@article{TRSPY_2018_303_a13,
     author = {V. V. Lebedev},
     title = {Uniformly convergent {Fourier} series and multiplication of functions},
     journal = {Informatics and Automation},
     pages = {186--192},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a13/}
}
TY  - JOUR
AU  - V. V. Lebedev
TI  - Uniformly convergent Fourier series and multiplication of functions
JO  - Informatics and Automation
PY  - 2018
SP  - 186
EP  - 192
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a13/
LA  - ru
ID  - TRSPY_2018_303_a13
ER  - 
%0 Journal Article
%A V. V. Lebedev
%T Uniformly convergent Fourier series and multiplication of functions
%J Informatics and Automation
%D 2018
%P 186-192
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a13/
%G ru
%F TRSPY_2018_303_a13
V. V. Lebedev. Uniformly convergent Fourier series and multiplication of functions. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 186-192. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a13/

[1] J.-P. Kahane, Séries de Fourier absolument convergentes, Springer, Berlin, 1970 | MR

[2] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover Publ., Mineola, NY, 1999 | MR | MR

[3] V. V. Lebedev, “On uniform convergence of Fourier series”, Math. Notes, 91:6 (2012), 889–892 | DOI | DOI | MR | Zbl

[4] N. K. Bari, A Treatise on Trigonometric Series, Pergamon, New York, 1964 | MR

[5] A. M. Olevskii, “On the algebra of functions generated by uniformly convergent Fourier series”, Sov. Math., Dokl., 36:3 (1988), 542–544 | MR

[6] S. A. Vinogradov, M. G. Goluzina, V. P. Khavin, “Multipliers and divisors of Cauchy–Stieltjes integrals”, Semin. Math., V.A. Steklov Math. Inst., Leningrad, 19, 1972, 29–42 | MR | Zbl