Finite point configurations in the plane, rigidity and Erd\H os problems
Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 142-154

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite point set $E\subset \mathbb {R}^d$ and a connected graph $G$ on $k+1$ vertices, we define a $G$‑framework to be a collection of $k+1$ points in $E$ such that the distance between a pair of points is specified if the corresponding vertices of $G$ are connected by an edge. We consider two frameworks the same if the specified edge-distances are the same. We find tight bounds on such distinct-distance drawings for rigid graphs in the plane, deploying the celebrated result of Guth and Katz. We introduce a congruence relation on a wider set of graphs, which behaves nicely in both the real-discrete and continuous settings. We provide a sharp bound on the number of such congruence classes. We then make a conjecture that the tight bound on rigid graphs should apply to all graphs. This appears to be a hard problem even in the case of the nonrigid $2$‑chain. However, we provide evidence to support the conjecture by demonstrating that if the Erdős pinned-distance conjecture holds in dimension $d$, then the result for all graphs in dimension $d$ follows.
@article{TRSPY_2018_303_a10,
     author = {A. Iosevich and J. Passant},
     title = {Finite point configurations in the plane, rigidity and {Erd\H} os problems},
     journal = {Informatics and Automation},
     pages = {142--154},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a10/}
}
TY  - JOUR
AU  - A. Iosevich
AU  - J. Passant
TI  - Finite point configurations in the plane, rigidity and Erd\H os problems
JO  - Informatics and Automation
PY  - 2018
SP  - 142
EP  - 154
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a10/
LA  - ru
ID  - TRSPY_2018_303_a10
ER  - 
%0 Journal Article
%A A. Iosevich
%A J. Passant
%T Finite point configurations in the plane, rigidity and Erd\H os problems
%J Informatics and Automation
%D 2018
%P 142-154
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a10/
%G ru
%F TRSPY_2018_303_a10
A. Iosevich; J. Passant. Finite point configurations in the plane, rigidity and Erd\H os problems. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 142-154. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a10/