Integrable 3D statistical models on six-valent graphs
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 214-233

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of a special statistical model on graphs with vertices of degrees $6$ and $1$. We show that this model is invariant with respect to certain Roseman moves if one regards the graph as the singular point set of the diagram of a $2$-knot. Our approach is based on the properties of the tetrahedron cohomology complex.
@article{TRSPY_2018_302_a9,
     author = {I. G. Korepanov and D. V. Talalaev and G. I. Sharygin},
     title = {Integrable {3D} statistical models on six-valent graphs},
     journal = {Informatics and Automation},
     pages = {214--233},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a9/}
}
TY  - JOUR
AU  - I. G. Korepanov
AU  - D. V. Talalaev
AU  - G. I. Sharygin
TI  - Integrable 3D statistical models on six-valent graphs
JO  - Informatics and Automation
PY  - 2018
SP  - 214
EP  - 233
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a9/
LA  - ru
ID  - TRSPY_2018_302_a9
ER  - 
%0 Journal Article
%A I. G. Korepanov
%A D. V. Talalaev
%A G. I. Sharygin
%T Integrable 3D statistical models on six-valent graphs
%J Informatics and Automation
%D 2018
%P 214-233
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a9/
%G ru
%F TRSPY_2018_302_a9
I. G. Korepanov; D. V. Talalaev; G. I. Sharygin. Integrable 3D statistical models on six-valent graphs. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 214-233. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a9/