Integrable 3D statistical models on six-valent graphs
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 214-233
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the study of a special statistical model on graphs with vertices of degrees $6$ and $1$. We show that this model is invariant with respect to certain Roseman moves if one regards the graph as the singular point set of the diagram of a $2$-knot. Our approach is based on the properties of the tetrahedron cohomology complex.
@article{TRSPY_2018_302_a9,
author = {I. G. Korepanov and D. V. Talalaev and G. I. Sharygin},
title = {Integrable {3D} statistical models on six-valent graphs},
journal = {Informatics and Automation},
pages = {214--233},
publisher = {mathdoc},
volume = {302},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a9/}
}
TY - JOUR AU - I. G. Korepanov AU - D. V. Talalaev AU - G. I. Sharygin TI - Integrable 3D statistical models on six-valent graphs JO - Informatics and Automation PY - 2018 SP - 214 EP - 233 VL - 302 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a9/ LA - ru ID - TRSPY_2018_302_a9 ER -
I. G. Korepanov; D. V. Talalaev; G. I. Sharygin. Integrable 3D statistical models on six-valent graphs. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 214-233. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a9/