Bounded discrete holomorphic functions on the hyperbolic plane
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 202-213

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, for the discretization of complex analysis introduced earlier by S. P. Novikov and the present author, there exists a rich family of bounded discrete holomorphic functions on the hyperbolic (Lobachevsky) plane endowed with a triangulation by regular triangles whose vertices have even valence. Namely, it is shown that every discrete holomorphic function defined in a bounded convex domain can be extended to a bounded discrete holomorphic function on the whole hyperbolic plane so that the Dirichlet energy be finite.
@article{TRSPY_2018_302_a8,
     author = {I. A. Dynnikov},
     title = {Bounded discrete holomorphic functions on the hyperbolic plane},
     journal = {Informatics and Automation},
     pages = {202--213},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a8/}
}
TY  - JOUR
AU  - I. A. Dynnikov
TI  - Bounded discrete holomorphic functions on the hyperbolic plane
JO  - Informatics and Automation
PY  - 2018
SP  - 202
EP  - 213
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a8/
LA  - ru
ID  - TRSPY_2018_302_a8
ER  - 
%0 Journal Article
%A I. A. Dynnikov
%T Bounded discrete holomorphic functions on the hyperbolic plane
%J Informatics and Automation
%D 2018
%P 202-213
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a8/
%G ru
%F TRSPY_2018_302_a8
I. A. Dynnikov. Bounded discrete holomorphic functions on the hyperbolic plane. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 202-213. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a8/