Delone sets in $\mathbb R^3$ with $2R$-regularity conditions
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 176-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

A regular system is the orbit of a point with respect to a crystallographic group. The central problem of the local theory of regular systems is to determine the value of the regularity radius, i.e., the radius of neighborhoods/clusters whose identity in a Delone $(r,R)$‑set guarantees its regularity. In this paper, conditions are described under which the regularity of a Delone set in three-dimensional Euclidean space follows from the pairwise congruence of small clusters of radius $2R$. Combined with the analysis of one particular case, this result also implies the proof of the "$10R$-theorem," which states that the congruence of clusters of radius $10R$ in a Delone set implies the regularity of this set.
Keywords: Delone set, crystallographic group, regular system, regularity radius, cluster.
@article{TRSPY_2018_302_a7,
     author = {N. P. Dolbilin},
     title = {Delone sets in $\mathbb R^3$ with $2R$-regularity conditions},
     journal = {Informatics and Automation},
     pages = {176--201},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a7/}
}
TY  - JOUR
AU  - N. P. Dolbilin
TI  - Delone sets in $\mathbb R^3$ with $2R$-regularity conditions
JO  - Informatics and Automation
PY  - 2018
SP  - 176
EP  - 201
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a7/
LA  - ru
ID  - TRSPY_2018_302_a7
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%T Delone sets in $\mathbb R^3$ with $2R$-regularity conditions
%J Informatics and Automation
%D 2018
%P 176-201
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a7/
%G ru
%F TRSPY_2018_302_a7
N. P. Dolbilin. Delone sets in $\mathbb R^3$ with $2R$-regularity conditions. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 176-201. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a7/

[1] Baburin I. A., Bouniaev M., Dolbilin N., Erokhovets N. Yu., Garber A., Krivovichev S. V., Schulte E., “On the origin of crystallinity: A lower bound for the regularity radius of Delone sets”, Acta Crystallogr. A, 74:6 (2018), 616–629, arXiv: 1804.05035 [math.MG] | DOI

[2] B. N. Delone, N. P. Dolbilin, M. I. Shtogrin, R. V. Galiulin, “A local criterion for regularity of a system of points”, Sov. Math. Dokl., 17:2 (1976), 319–322 | MR

[3] N. P. Dolbilin, “Crystal criterion and locally antipodal Delaunay sets”, Vestn. Chelyab. Gos. Univ., 2015, no. 3, 6–17

[4] Dolbilin N., “Delone sets with congruent clusters”, Struct. Chem., 27:6 (2016), 1725–1732 | DOI

[5] N. P. Dolbilin, “Delone sets in $\mathbb R^3$: Regularity conditions”, Fund. Prikl. Mat., 21:6 (2016), 115–141

[6] N. P. Dolbilin, A. N. Magazinov, “Locally antipodal Delaunay sets”, Russ. Math. Surv., 70:5 (2015), 958–960 | DOI | DOI | MR

[7] N. P. Dolbilin, A. N. Magazinov, “Uniqueness theorem for locally antipodal Delaunay sets”, Proc. Steklov Inst. Math., 294 (2016), 215–221 | DOI | MR

[8] R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics, Ch. 30, v. II, Addison Wesley, Reading, MA, 1964 | MR

[9] M. Shtogrin, “Bound on the order of spider's axis in a locally regular Delone system”, Geometry, Topology, Algebra and Number Theory, Applications, Int. Conf. dedicated to the 120th anniversary of Boris Delone, Abstracts (Moscow, 2010), Steklov Math. Inst., M., 2010, 168–169