Dehn invariant and scissors congruence of flexible polyhedra
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 143-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Dehn invariant of any flexible polyhedron in $n$-dimensional Euclidean space, where $n\ge 3$, is constant during the flexion. For $n=3$ and $4$ this implies that any flexible polyhedron remains scissors congruent to itself during the flexion. This proves the Strong Bellows Conjecture posed by R. Connelly in 1979. It was believed that this conjecture was disproved by V. Alexandrov and R. Connelly in 2009. However, we find an error in their counterexample. Further, we show that the Dehn invariant of a flexible polyhedron in the $n$‑dimensional sphere or $n$-dimensional Lobachevsky space, where $n\ge 3$, is constant during the flexion whenever this polyhedron satisfies the usual Bellows Conjecture, i.e., whenever its volume is constant during every flexion of it. Using previous results of the first named author, we deduce that the Dehn invariant is constant during the flexion for every bounded flexible polyhedron in odd-dimensional Lobachevsky space and for every flexible polyhedron with sufficiently small edge lengths in any space of constant curvature of dimension at least $3$.
Keywords: flexible polyhedron, Dehn invariant, scissors congruence, strong bellows conjecture, analytic continuation.
@article{TRSPY_2018_302_a5,
     author = {Alexander A. Gaifullin and Leonid S. Ignashchenko},
     title = {Dehn invariant and scissors congruence of flexible polyhedra},
     journal = {Informatics and Automation},
     pages = {143--160},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a5/}
}
TY  - JOUR
AU  - Alexander A. Gaifullin
AU  - Leonid S. Ignashchenko
TI  - Dehn invariant and scissors congruence of flexible polyhedra
JO  - Informatics and Automation
PY  - 2018
SP  - 143
EP  - 160
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a5/
LA  - ru
ID  - TRSPY_2018_302_a5
ER  - 
%0 Journal Article
%A Alexander A. Gaifullin
%A Leonid S. Ignashchenko
%T Dehn invariant and scissors congruence of flexible polyhedra
%J Informatics and Automation
%D 2018
%P 143-160
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a5/
%G ru
%F TRSPY_2018_302_a5
Alexander A. Gaifullin; Leonid S. Ignashchenko. Dehn invariant and scissors congruence of flexible polyhedra. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 143-160. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a5/

[1] Alexandrov V., “An example of a flexible polyhedron with nonconstant volume in the spherical space”, Beitr. Algebra Geom., 38:1 (1997), 11–18 | MR

[2] Alexandrov V., “The Dehn invariants of the Bricard octahedra”, J. Geom., 99:1–2 (2010), 1–13, arXiv: 0901.2989 [math.MG] | DOI | MR

[3] Alexandrov V., Connelly R., “Flexible suspensions with a hexagonal equator”, Ill. J. Math., 55:1 (2011), 127–155, arXiv: 0905.3683 [math.MG] | MR

[4] V. G. Boltianskii, Hilbert's Third Problem, Scripta Ser. Math., V. H.Winston Sons, Washington, D.C., 1978 | MR | MR

[5] Bricard R., “Mémoire sur la théorie de l'octaèdre articulé”, J. math. pures appl. Sér. 5, 5:3 (1897), 113–148

[6] Connelly R., An attack on rigidity. I, II, Preprint, Cornell Univ., New York, 1974 ; Konnelli R., “Ob odnom podkhode k probleme neizgibaemosti”, Issledovaniya po metricheskoi teorii poverkhnostei, Matematika. Novoe v zarubezhnoi nauke, 18, Mir, M., 1980, 164–209 | MR

[7] Connelly R., “An attack on rigidity. I, II”, Bull. Amer. Math. Soc., 81 (1975), 566–569 | DOI | MR

[8] Connelly R., “A counterexample to the rigidity conjecture for polyhedra”, Publ. math. Inst. Hautes Étud. Sci., 47 (1977), 333–338 | DOI | MR

[9] Connelly R., “Conjectures and open questions in rigidity”, Proc. Int. Congr. Math. (Helsinki, 1978), v. 1, Acad. Sci. Fennica, Helsinki, 1980, 407–414 | MR

[10] Connelly R., “The rigidity of polyhedral surfaces”, Math. Mag., 52:5 (1979), 275–283 | DOI | MR

[11] Connelly R., Sabitov I., Walz A., “The bellows conjecture”, Beitr. Algebra Geom., 38:1 (1997), 1–10 | MR

[12] Dehn M., “Ueber den Rauminhalt”, Math Ann., 55:3 (1901), 465–478 | DOI | MR

[13] Dupont J. L., Scissors congruences, group homology and characteristic classes, Nankai Tracts Math., 1, World Scientific, Singapore, 2001 | DOI | MR

[14] Gaifullin A. A., “Sabitov polynomials for volumes of polyhedra in four dimensions”, Adv. Math., 252 (2014), 586–611, arXiv: 1108.6014 [math.MG] | DOI | MR

[15] Gaifullin A. A., “Generalization of Sabitov's theorem to polyhedra of arbitrary dimensions”, Discrete Comput. Geom., 52:2 (2014), 195–220, arXiv: 1210.5408 [math.MG] | DOI | MR

[16] A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature”, Proc. Steklov Inst. Math., 286 (2014), 77–113 | DOI | MR

[17] A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with nonconstant volumes”, Proc. Steklov Inst. Math., 288 (2015), 56–80 | DOI | MR

[18] A. A. Gaifullin, “The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces”, Sb. Math., 206:11 (2015), 1564–1609 | DOI | DOI | MR

[19] Gaifullin A. A., “The bellows conjecture for small flexible polyhedra in non-Euclidean spaces”, Moscow Math. J., 17:2 (2017), 269–290, arXiv: 1605.04568 [math.MG] | MR

[20] Hadwiger H., “Ergänzungsgleichheit $k$-dimensionaler Polyeder”, Math. Z., 55:3 (1952), 292–298 | DOI | MR

[21] Hadwiger H., “Zum Problem der Zerlegungsgleichheit $k$-dimensionaler Polyeder”, Math. Ann., 127 (1954), 170–174 | DOI | MR

[22] Jessen B., “The algebra of polyhedra and the Dehn–Sydler theorem”, Math. Scand., 22:2 (1968), 241–256 | DOI | MR

[23] Kuiper N. H., “Sphères polyédriques flexibles dans $E^3$, d'après Robert Connelly”, Séminaire Bourbaki 1977/78, Exp. 514, Lect. Notes Math., 710, Springer, Berlin, 1979, 147–168 | DOI | MR

[24] I. Kh. Sabitov, “The volume of a polyhedron as a function of its metric”, Fundam. Prikl. Mat., 2:4 (1996), 1235–1246 | MR

[25] I. Kh. Sabitov, “A generalized Heron–Tartaglia formula and some of its consequences”, Sb. Math., 189:10 (1998), 1533–1561 | DOI | DOI | MR

[26] Sabitov I. Kh., “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom., 20:4 (1998), 405–425 | DOI | MR

[27] Sah C.-H., Hilbert's third problem: Scissors congruence, Res. Notes Math., 33, Pitman Adv. Publ. Program, San Francisco, 1979 | MR

[28] H. Seifert, W. Threlfall, A Textbook of Topology, Pure Appl. Math., 89, Academic, New York, 1980 | MR

[29] Sydler J.-P., “Sur la décomposition des polyèdres”, Comment. Math. Helv., 16 (1943), 266–273 | DOI | MR

[30] Sydler J.-P., “Conditions nécessaires et suffisantes pour l'équivalence des polyèdres de l'espace euclidien à trois dimensions”, Comment. Math. Helv., 40 (1965), 43–80 | DOI | MR

[31] Whitney H., “Elementary structure of real algebraic varieties”, Ann. Math. Ser. 2, 66:3 (1957), 545–556 | DOI | MR

[32] V. B. Zylev, “Equicomposability of equicomplementable polyhedra”, Sov. Math., Dokl., 6 (1965), 453–455 | MR

[33] V. B. Zylev, “$G$-composedness and $G$-complementability”, Sov. Math., Dokl., 9 (1968), 403–404 | MR