Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_302_a5, author = {Alexander A. Gaifullin and Leonid S. Ignashchenko}, title = {Dehn invariant and scissors congruence of flexible polyhedra}, journal = {Informatics and Automation}, pages = {143--160}, publisher = {mathdoc}, volume = {302}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a5/} }
TY - JOUR AU - Alexander A. Gaifullin AU - Leonid S. Ignashchenko TI - Dehn invariant and scissors congruence of flexible polyhedra JO - Informatics and Automation PY - 2018 SP - 143 EP - 160 VL - 302 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a5/ LA - ru ID - TRSPY_2018_302_a5 ER -
Alexander A. Gaifullin; Leonid S. Ignashchenko. Dehn invariant and scissors congruence of flexible polyhedra. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 143-160. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a5/
[1] Alexandrov V., “An example of a flexible polyhedron with nonconstant volume in the spherical space”, Beitr. Algebra Geom., 38:1 (1997), 11–18 | MR
[2] Alexandrov V., “The Dehn invariants of the Bricard octahedra”, J. Geom., 99:1–2 (2010), 1–13, arXiv: 0901.2989 [math.MG] | DOI | MR
[3] Alexandrov V., Connelly R., “Flexible suspensions with a hexagonal equator”, Ill. J. Math., 55:1 (2011), 127–155, arXiv: 0905.3683 [math.MG] | MR
[4] V. G. Boltianskii, Hilbert's Third Problem, Scripta Ser. Math., V. H.Winston Sons, Washington, D.C., 1978 | MR | MR
[5] Bricard R., “Mémoire sur la théorie de l'octaèdre articulé”, J. math. pures appl. Sér. 5, 5:3 (1897), 113–148
[6] Connelly R., An attack on rigidity. I, II, Preprint, Cornell Univ., New York, 1974 ; Konnelli R., “Ob odnom podkhode k probleme neizgibaemosti”, Issledovaniya po metricheskoi teorii poverkhnostei, Matematika. Novoe v zarubezhnoi nauke, 18, Mir, M., 1980, 164–209 | MR
[7] Connelly R., “An attack on rigidity. I, II”, Bull. Amer. Math. Soc., 81 (1975), 566–569 | DOI | MR
[8] Connelly R., “A counterexample to the rigidity conjecture for polyhedra”, Publ. math. Inst. Hautes Étud. Sci., 47 (1977), 333–338 | DOI | MR
[9] Connelly R., “Conjectures and open questions in rigidity”, Proc. Int. Congr. Math. (Helsinki, 1978), v. 1, Acad. Sci. Fennica, Helsinki, 1980, 407–414 | MR
[10] Connelly R., “The rigidity of polyhedral surfaces”, Math. Mag., 52:5 (1979), 275–283 | DOI | MR
[11] Connelly R., Sabitov I., Walz A., “The bellows conjecture”, Beitr. Algebra Geom., 38:1 (1997), 1–10 | MR
[12] Dehn M., “Ueber den Rauminhalt”, Math Ann., 55:3 (1901), 465–478 | DOI | MR
[13] Dupont J. L., Scissors congruences, group homology and characteristic classes, Nankai Tracts Math., 1, World Scientific, Singapore, 2001 | DOI | MR
[14] Gaifullin A. A., “Sabitov polynomials for volumes of polyhedra in four dimensions”, Adv. Math., 252 (2014), 586–611, arXiv: 1108.6014 [math.MG] | DOI | MR
[15] Gaifullin A. A., “Generalization of Sabitov's theorem to polyhedra of arbitrary dimensions”, Discrete Comput. Geom., 52:2 (2014), 195–220, arXiv: 1210.5408 [math.MG] | DOI | MR
[16] A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature”, Proc. Steklov Inst. Math., 286 (2014), 77–113 | DOI | MR
[17] A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with nonconstant volumes”, Proc. Steklov Inst. Math., 288 (2015), 56–80 | DOI | MR
[18] A. A. Gaifullin, “The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces”, Sb. Math., 206:11 (2015), 1564–1609 | DOI | DOI | MR
[19] Gaifullin A. A., “The bellows conjecture for small flexible polyhedra in non-Euclidean spaces”, Moscow Math. J., 17:2 (2017), 269–290, arXiv: 1605.04568 [math.MG] | MR
[20] Hadwiger H., “Ergänzungsgleichheit $k$-dimensionaler Polyeder”, Math. Z., 55:3 (1952), 292–298 | DOI | MR
[21] Hadwiger H., “Zum Problem der Zerlegungsgleichheit $k$-dimensionaler Polyeder”, Math. Ann., 127 (1954), 170–174 | DOI | MR
[22] Jessen B., “The algebra of polyhedra and the Dehn–Sydler theorem”, Math. Scand., 22:2 (1968), 241–256 | DOI | MR
[23] Kuiper N. H., “Sphères polyédriques flexibles dans $E^3$, d'après Robert Connelly”, Séminaire Bourbaki 1977/78, Exp. 514, Lect. Notes Math., 710, Springer, Berlin, 1979, 147–168 | DOI | MR
[24] I. Kh. Sabitov, “The volume of a polyhedron as a function of its metric”, Fundam. Prikl. Mat., 2:4 (1996), 1235–1246 | MR
[25] I. Kh. Sabitov, “A generalized Heron–Tartaglia formula and some of its consequences”, Sb. Math., 189:10 (1998), 1533–1561 | DOI | DOI | MR
[26] Sabitov I. Kh., “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom., 20:4 (1998), 405–425 | DOI | MR
[27] Sah C.-H., Hilbert's third problem: Scissors congruence, Res. Notes Math., 33, Pitman Adv. Publ. Program, San Francisco, 1979 | MR
[28] H. Seifert, W. Threlfall, A Textbook of Topology, Pure Appl. Math., 89, Academic, New York, 1980 | MR
[29] Sydler J.-P., “Sur la décomposition des polyèdres”, Comment. Math. Helv., 16 (1943), 266–273 | DOI | MR
[30] Sydler J.-P., “Conditions nécessaires et suffisantes pour l'équivalence des polyèdres de l'espace euclidien à trois dimensions”, Comment. Math. Helv., 40 (1965), 43–80 | DOI | MR
[31] Whitney H., “Elementary structure of real algebraic varieties”, Ann. Math. Ser. 2, 66:3 (1957), 545–556 | DOI | MR
[32] V. B. Zylev, “Equicomposability of equicomplementable polyhedra”, Sov. Math., Dokl., 6 (1965), 453–455 | MR
[33] V. B. Zylev, “$G$-composedness and $G$-complementability”, Sov. Math., Dokl., 9 (1968), 403–404 | MR