Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_302_a18, author = {Grigory D. Solomadin}, title = {Quasitoric totally normally split manifolds}, journal = {Informatics and Automation}, pages = {377--399}, publisher = {mathdoc}, volume = {302}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a18/} }
Grigory D. Solomadin. Quasitoric totally normally split manifolds. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 377-399. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a18/
[1] Arthan R. D., Bullett S. R., “The homology of $\mathrm {MO}(1)^{\wedge \infty }$ and $\mathrm {MU}(1)^{\wedge \infty }$”, J. Pure Appl. Algebra., 26 (1982), 229–234 | DOI | MR
[2] M. F. Atiyah, K-Theory, W.A. Benjamin, New York, 1967 | MR
[3] Atiyah M. F., Hirzebruch F., “Vector bundles and homogeneous spaces”, Differential geometry, Proc. Symp. Pure Math., 3, Amer. Math. Soc., Providence, RI, 1961, 7–38 | DOI | MR
[4] Ayzenberg A., Masuda M., “Volume polynomials and duality algebras of multi-fans”, Arnold Math. J., 2:3 (2016), 329–381, arXiv: 1509.03008 [math.CO] | DOI | MR
[5] Bogart T., Contois M., Gubeladze J., “Hom-polytopes”, Math. Z., 273:3–4 (2013), 1267–1296 | DOI | MR
[6] V. M. Buchstaber, V. D. Volodin, “Sharp upper and lower bounds for nestohedra”, Izv. Math., 75:6 (2011), 1107–1133 | DOI | DOI | MR
[7] Buchstaber V. M., Volodin V. D., “Combinatorial 2-truncated cubes and applications”, Associahedra, Tamari lattices and related structures, Prog. Math., 299, Birkhäuser, Basel, 2012, 161–186 | MR
[8] Buchstaber V. M., Panov T. E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR
[9] Davis M. W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR
[10] Huh J., Rota's conjecture and positivity of algebraic cycles in permutohedral varieties, PhD Thesis, Univ. Michigan, Ann Arbor, MI, 2014 | MR
[11] Morelli R., “The $K$ theory of a toric variety”, Adv. Math., 100:2 (1993), 154–182 | DOI | MR
[12] Ochanine S., Schwartz L., “Une remarque sur les générateurs du cobordisme complexe”, Math. Z., 190 (1985), 543–557 | DOI | MR
[13] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer, Berlin, 2004 | DOI | MR
[14] A. V. Pukhlikov, A. G. Khovanskii, “Finitely additive measures of virtual polyhedra”, St. Petersburg Math. J., 4:2 (1993), 337–356 | MR
[15] A. V. Pukhlikov, A. G. Khovanskii, “A Riemann–Roch theorem for integrals and sums of quasipolynomials over virtual polytopes”, St. Petersburg Math. J., 4:4 (1993), 789–812 | MR
[16] Ray N., “On a construction in bordism theory”, Proc. Edinb. Math. Soc., 29:3 (1986), 413–422 | DOI | MR
[17] Sankaran P., Uma V., “$K$-theory of quasi-toric manifolds”, Osaka J. Math., 44:1 (2007), 71–89 | MR
[18] G. D. Solomadin, “Quasitoric totally normally split representatives in unitary cobordism ring”, Mat. Zametki, 2019, arXiv: 1704.07403 [math.AT] | DOI
[19] Tarski A., A decision method for elementary algebra and geometry, Rand Corp., Santa Monica, CA, 1948 | MR
[20] V. A. Timorin, “An analogue of the Hodge–Riemann relations for simple convex polytopes”, Russ. Math. Surv., 54:2 (1999), 381–426 | DOI | DOI | MR
[21] G. M. Ziegler, Lectures on Polytopes, Grad. Texts Math., 152, Springer, New York, 1995 | DOI | MR