Integrability of exceptional hydrodynamic-type systems
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 343-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-diagonalizable hydrodynamic-type systems integrable by the extended hodograph method. We restrict the analysis to non-diagonalizable hydrodynamic reductions of the three-dimensional Mikhalev equation. We show that families of these hydrodynamic-type systems are reducible to the heat hierarchy. Then we construct new particular explicit solutions for the Mikhalev equation.
Keywords: integrable quasilinear systems of first order, linearly degenerate systems of first order, characteristic velocities, extended hodograph method.
@article{TRSPY_2018_302_a16,
     author = {Maxim V. Pavlov},
     title = {Integrability of exceptional hydrodynamic-type systems},
     journal = {Informatics and Automation},
     pages = {343--353},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a16/}
}
TY  - JOUR
AU  - Maxim V. Pavlov
TI  - Integrability of exceptional hydrodynamic-type systems
JO  - Informatics and Automation
PY  - 2018
SP  - 343
EP  - 353
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a16/
LA  - ru
ID  - TRSPY_2018_302_a16
ER  - 
%0 Journal Article
%A Maxim V. Pavlov
%T Integrability of exceptional hydrodynamic-type systems
%J Informatics and Automation
%D 2018
%P 343-353
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a16/
%G ru
%F TRSPY_2018_302_a16
Maxim V. Pavlov. Integrability of exceptional hydrodynamic-type systems. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 343-353. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a16/

[1] Ferapontov E. V., “Integration of weakly nonlinear hydrodynamic systems in Riemann invariants”, Phys. Lett. A, 158:3–4 (1991), 112–118 | DOI | MR

[2] Ferapontov E. V., Khusnutdinova K. R., “On the integrability of $(2+1)$-dimensional quasilinear systems”, Commun. Math. Phys., 248:1 (2004), 187–206 | DOI | MR

[3] Ferapontov E. V., Khusnutdinova K. R., “The characterization of two-component $(2+1)$-dimensional integrable systems of hydrodynamic type”, J. Phys. A: Math. Gen., 37:8 (2004), 2949–2963 | DOI | MR

[4] Ferapontov E. V., Moss J., “Linearly degenerate partial differential equations and quadratic line complexes”, Commun. Anal. Geom., 23:1 (2015), 91–127 | DOI | MR

[5] Gibbons J., Kodama Y., “Integrable quasilinear systems: generalized hodograph transformation”, Nonlinear evolutions, Proc. Workshop (Balaruc-les-Bains, 1987), World Scientific, Singapore, 1988, 97–107 | MR

[6] Kodama Y., “A method for solving the dispersionless KP equation and its exact solutions”, Phys. Lett. A, 129:4 (1988), 223–226 | DOI | MR

[7] Kodama Y., “A solution method for the dispersion-less KP equation”, Prog. Theor. Phys. Suppl., 94 (1988), 184–194 | DOI | MR

[8] Kodama Y., “Exact solutions of hydrodynamic type equations having infinitely many conserved densities”, Phys. Lett. A, 135:3 (1989), 171–174 | DOI | MR

[9] Kodama Y., “Solutions of the dispersionless Toda equation”, Phys. Lett. A, 147:8–9 (1990), 477–482 | DOI | MR

[10] Kodama Y., Gibbons J., “A method for solving the dispersionless KP hierarchy and its exact solutions. II”, Phys. Lett. A, 135:3 (1989), 167–170 | DOI | MR

[11] Kodama Y., Gibbons J., “Integrability of the dispersionless KP hierarchy”, Nonlinear world, Proc. Workshop (Kiev, 1989), v. 1, World Scientific, Singapore, 1990, 166–180 | MR

[12] Y. Kodama, B. G. Konopelchenko, “Confluence of hypergeometric functions and integrable hydrodynamic-type systems”, Theor. Math. Phys., 188:3 (2016), 1334–1357 | DOI | DOI | MR

[13] Konopelchenko B. G., Ortenzi G., Parabolic regularization of the gradient catastrophes for the Burgers–Hopf equation and Jordan chain, 2017, arXiv: 1711.01087 [math-ph] | MR

[14] V. G. Mikhalev, “On the Hamiltonian formalism for Korteweg–de Vries type hierarchies”, Funct. Anal. Appl., 26:2 (1992), 140–142 | DOI | MR

[15] M. V. Pavlov, “Hamiltonian formalism of weakly nonlinear hydrodynamic systems”, Theor. Math. Phys., 73:2 (1987), 1242–1245 | DOI | MR

[16] Pavlov M. V., “Integrable hydrodynamic chains”, J. Math. Phys., 44:9 (2003), 4134–4156 | DOI | MR

[17] M. V. Pavlov, “Integrability of the Egorov systems of hydrodynamic type”, Theor. Math. Phys., 150:2 (2007), 225–243 | DOI | DOI | MR

[18] Pavlov M. V., “Integrable dispersive chains and energy dependent Schrödinger operator”, J. Phys. A: Math. Theor., 47:29 (2014), 295204 | DOI | MR

[19] S. P. Tsarev, “On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type”, Sov. Math., Dokl., 31 (1985), 488–491 | MR

[20] S. P. Tsarev, “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR, Izv., 37:2 (1991), 397–419 | DOI | MR