The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 296-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the applications of the theory of dynamical systems to the theory of transport phenomena in metals in the presence of strong magnetic fields. More precisely, we consider the connection between the geometry of the trajectories of dynamical systems arising at the Fermi surface in the presence of an external magnetic field and the behavior of the conductivity tensor in a metal in the limit $\omega _B\tau \to \infty $. We describe the history of the question and investigate special features of such behavior in the case of the appearance of trajectories of the most complex type on the Fermi surface of a metal.
@article{TRSPY_2018_302_a13,
     author = {A. Ya. Maltsev and S. P. Novikov},
     title = {The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems},
     journal = {Informatics and Automation},
     pages = {296--315},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a13/}
}
TY  - JOUR
AU  - A. Ya. Maltsev
AU  - S. P. Novikov
TI  - The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems
JO  - Informatics and Automation
PY  - 2018
SP  - 296
EP  - 315
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a13/
LA  - ru
ID  - TRSPY_2018_302_a13
ER  - 
%0 Journal Article
%A A. Ya. Maltsev
%A S. P. Novikov
%T The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems
%J Informatics and Automation
%D 2018
%P 296-315
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a13/
%G ru
%F TRSPY_2018_302_a13
A. Ya. Maltsev; S. P. Novikov. The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 296-315. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a13/

[1] A. A. Abrikosov, Fundamentals of the Theory of Metals, North-Holland, Amsterdam, 1988

[2] Avila A., Hubert P., Skripchenko A., “Diffusion for chaotic plane sections of 3-periodic surfaces”, Invent. math., 206:1 (2016), 109–146 | DOI | MR

[3] Avila A., Hubert P., Skripchenko A., “On the Hausdorff dimension of the Rauzy gasket”, Bull. Soc. math. France, 144:3 (2016), 539–568 | DOI | MR

[4] R. De Leo, “The existence and measure of ergodic foliations in Novikov's problem of the semiclassical motion of an electron”, Russ. Math. Surv., 55:1 (2000), 166–168 | DOI | DOI | MR

[5] R. De Leo, “Characterization of the set of ‘ergodic directions’ in Novikov's problem of quasi-electron orbits in normal metals”, Russ. Math. Surv., 58:5 (2003), 1042–1043 | DOI | DOI | MR

[6] De Leo R., “First-principles generation of stereographic maps for high-field magnetoresistance in normal metals: An application to Au and Ag”, Physica B, 362:1–4 (2005), 62–75 | DOI

[7] De Leo R., “Topology of plane sections of periodic polyhedra with an application to the truncated octahedron”, Exp. Math., 15:1 (2006), 109–124 | DOI | MR

[8] De Leo R., A survey on quasiperiodic topology, 2017, arXiv: 1711.01716 [math.GT]

[9] R. De Leo, I. A. Dynnikov, “An example of a fractal set of plane directions having chaotic intersections with a fixed 3-periodic surface”, Russ. Math. Surv., 62:5 (2007), 990–992 | DOI | DOI | MR

[10] De Leo R., Dynnikov I. A., “Geometry of plane sections of the infinite regular skew polyhedron $\{4,6\mid 4\}$”, Geom. dedicata, 138 (2009), 51–67 | DOI | MR

[11] I. A. Dynnikov, “Proof of S.P. Novikov's conjecture for the case of small perturbations of rational magnetic fields”, Russ. Math. Surv., 47:3 (1992), 172–173 | DOI | MR

[12] I. A. Dynnikov, “Proof of S.P. Novikov's conjecture on the semiclassical motion of an electron”, Math. Notes, 53:5 (1993), 495–501 | DOI | MR

[13] Dynnikov I. A., “Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples”, Solitons, geometry, and topology: On the crossroad, AMS Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 45–73 | MR

[14] I. A. Dynnikov, “The geometry of stability regions in Novikov's problem on the semiclassical motion of an electron”, Russ. Math. Surv., 54:1 (1999), 21–59 | DOI | DOI | MR

[15] I. A. Dynnikov, “Interval identification systems and plane sections of 3-periodic surfaces”, Proc. Steklov Inst. Math., 263 (2008), 65–77 | DOI | MR

[16] I. A. Dynnikov, A. Ya. Maltsev, “Topological characteristics of electronic spectra of single crystals”, J. Exp. Theor. Phys., 85:1 (1997), 205–208 | DOI

[17] I. A. Dynnikov, S. P. Novikov, “Topology of quasi-periodic functions on the plane”, Russ. Math. Surv., 60:1 (2005), 1–26 | DOI | DOI | MR | MR

[18] Dynnikov I., Skripchenko A., “On typical leaves of a measured foliated 2-complex of thin type”, Topology, geometry, integrable systems, and mathematical physics: Novikov's seminar 2012–2014, AMS Transl. Ser. 2, 234, eds. V. M. Buchstaber, B. A. Dubrovin, I. M. Krichever, Amer. Math. Soc., Providence, RI, 2014, 173–199 ; Adv. Math. Sci., 67, arXiv: 1309.4884 [math.GT] | MR

[19] I. Dynnikov, A. Skripchenko, “Symmetric band complexes of thin type and chaotic sections which are not quite chaotic”, Trans. Moscow Math. Soc., 76:2 (2015), 251–269 | DOI | MR

[20] Kaganov M. I., Peschansky V. G., “Galvano-magnetic phenomena today and forty years ago”, Phys. Rep., 372:6 (2002), 445–487 | DOI

[21] C. Kittel, Quantum Theory of Solids, J. Wiley and Sons, New York, 1963

[22] I. M. Lifshitz, M. Ia. Azbel', M. I. Kaganov, “The theory of galvanomagnetic effects in metals”, Sov. Phys. JETP, 4:1 (1957), 41–54 | MR | MR

[23] I. M. Lifshits, M. Ya. Azbel', M. I. Kaganov, Electron Theory of Metals, Consultants Bureau, New York, 1973

[24] I. M. Lifshitz, M. I. Kaganov, “Some problems of the electron theory of metals. I: Classical and quantum mechanics of electrons in metals”, Sov. Phys. Usp., 2:6 (831–855), 1960 | DOI | MR

[25] I. M. Lifshitz, M. I. Kaganov, “Some problems of the electron theory of metals. II: Statistical mechanics and thermodynamics of electrons in metals”, Sov. Phys. Usp., 5:6 (1963), 878–907 | DOI | DOI

[26] I. M. Lifshitz, M. I. Kaganov, “Some problems of the electron theory of metals. III: Kinetic properties of electrons in metals”, Sov. Phys. Usp., 8:6 (1966), 805–851 | DOI

[27] I. M. Lifshitz, V. G. Peschanskii, “Galvanomagnetic characteristics of metals with open Fermi surfaces. I”, Sov. Phys. JETP, 8:5 (1959), 875–883

[28] I. M. Lifshitz, V. G. Peschanskii, “Galvanomagnetic characteristics of metals with open Fermi surfaces. II”, Sov. Phys. JETP, 11:1 (1960), 137–141

[29] A. Ya. Mal'tsev, “Anomalous behavior of the electrical conductivity tensor in strong magnetic fields”, J. Exp. Theor. Phys., 85:5 (934–942), 1997

[30] Maltsev A. Ya., “Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas”, J. Math. Phys., 45:3 (2004), 1128–1149 | DOI | MR

[31] A. Ya. Maltsev, “On the analytical properties of the magneto-conductivity in the case of presence of stable open electron trajectories on a complex Fermi surface”, J. Exp. Theor. Phys., 124:5 (2017), 805–831 | DOI

[32] A. Ya. Maltsev, “Oscillation phenomena and experimental determination of exact mathematical stability zones for magneto-conductivity in metals having complicated Fermi surfaces”, J. Exp. Theor. Phys., 125:5 (2017), 896–905 | DOI | DOI

[33] Maltsev A. Ya., Novikov S. P., “Quasiperiodic functions and dynamical systems in quantum solid state physics”, Bull. Braz. Math. Soc., 34:1 (2003), 171–210 | DOI | MR

[34] Maltsev A. Ya., Novikov S. P., “Dynamical systems, topology, and conductivity in normal metals”, J. Stat. Phys., 115:1–2 (2004), 31–46 | DOI | MR

[35] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russ. Math. Surv., 37:5 (1982), 1–56 | DOI | DOI | MR

[36] S. P. Novikov, “Levels of quasiperiodic functions on a plane, and Hamiltonian systems”, Russ. Math. Surv., 54:5 (1999), 1031–1032 | DOI | DOI | MR

[37] S. P. Novikov, A. Ya. Mal'tsev, “Topological quantum characteristics observed in the investigation of the conductivity in normal metals”, JETP Lett., 63:10 (1996), 855–860 | DOI

[38] S. P. Novikov, A. Ya. Mal'tsev, “Topological phenomena in normal metals”, Phys. Usp., 41:3 (1998), 231–239 | DOI | DOI

[39] Skripchenko A., “Symmetric interval identification systems of order three”, Discrete Contin. Dyn. Sys., 32:2 (2012), 643–656 | DOI | MR

[40] Skripchenko A., “On connectedness of chaotic sections of some 3-periodic surfaces”, Ann. Global Anal. Geom., 43:3 (2013), 253–271 | DOI | MR

[41] J. M. Ziman, Principles of the Theory of Solids, Cambridge Univ. Press, London, 1972 | MR

[42] A. V. Zorich, “A problem of Novikov on the semiclassical motion of an electron in a uniform almost rational magnetic field”, Russ. Math. Surv., 39:5 (1984), 287–288 | DOI | MR

[43] Zorich A., “Asymptotic flag of an orientable measured foliation on a surface”, Geometric study of foliations, Proc. Int. Symp./Workshop (Tokyo, 1993), eds. T. Mizutani et al., World Scientific, Singapore, 1994, 479–498 | MR

[44] Zorich A., “Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents”, Ann. Inst. Fourier, 46:2 (1996), 325–370 | DOI | MR

[45] Zorich A., “On hyperplane sections of periodic surfaces”, Solitons, geometry, and topology: On the crossroad, AMS Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 173–189 | MR

[46] Zorich A., “Deviation for interval exchange transformations”, Ergodic Theory Dyn. Syst., 17:6 (1997), 1477–1499 | DOI | MR

[47] Zorich A., How do the leaves of a closed 1-form wind around a surface?, Pseudoperiodic topology, AMS Transl. Ser. 2, 197, eds. V. I. Arnold, M. Kontsevich, A. Zorich, Am. Math. Soc., Providence, RI, 1999, 135–178 ; Adv. Math. Sci., 46 | MR | MR

[48] Zorich A., “Flat surfaces”, Frontiers in number theory, physics, and geometry, Papers from the meeting (Les Houches, France, 2003), v. 1, On random matrices, zeta functions, and dynamical systems, eds. P. Cartier et al., Springer, Berlin, 2006, 439–585 | DOI | MR