Calabi--Yau hypersurfaces and SU-bordism
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 287-295
Voir la notice de l'article provenant de la source Math-Net.Ru
V. V. Batyrev constructed a family of Calabi–Yau hypersurfaces dual to the first Chern class in toric Fano varieties. Using this construction, we introduce a family of Calabi–Yau manifolds whose $\mathrm {SU}$-bordism classes generate the special unitary bordism ring $\varOmega ^{\mathrm {SU}}\bigl [\tfrac 12\bigr ]\cong \mathbb {Z}\bigl [\tfrac 12\bigr ][y_i\colon i\ge 2]$. We also describe explicit Calabi–Yau representatives for multiplicative generators of the $\mathrm {SU}$-bordism ring in low dimensions.
Keywords:
special unitary bordism, SU-manifold, Calabi–Yau manifold, Chern number, toric Fano variety, reflexive polytope.
@article{TRSPY_2018_302_a12,
author = {Ivan Yu. Limonchenko and Zhi L\"u and Taras E. Panov},
title = {Calabi--Yau hypersurfaces and {SU-bordism}},
journal = {Informatics and Automation},
pages = {287--295},
publisher = {mathdoc},
volume = {302},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a12/}
}
Ivan Yu. Limonchenko; Zhi Lü; Taras E. Panov. Calabi--Yau hypersurfaces and SU-bordism. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 287-295. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a12/