Calabi--Yau hypersurfaces and SU-bordism
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 287-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

V. V. Batyrev constructed a family of Calabi–Yau hypersurfaces dual to the first Chern class in toric Fano varieties. Using this construction, we introduce a family of Calabi–Yau manifolds whose $\mathrm {SU}$-bordism classes generate the special unitary bordism ring $\varOmega ^{\mathrm {SU}}\bigl [\tfrac 12\bigr ]\cong \mathbb {Z}\bigl [\tfrac 12\bigr ][y_i\colon i\ge 2]$. We also describe explicit Calabi–Yau representatives for multiplicative generators of the $\mathrm {SU}$-bordism ring in low dimensions.
Keywords: special unitary bordism, SU-manifold, Calabi–Yau manifold, Chern number, toric Fano variety, reflexive polytope.
@article{TRSPY_2018_302_a12,
     author = {Ivan Yu. Limonchenko and Zhi L\"u and Taras E. Panov},
     title = {Calabi--Yau hypersurfaces and {SU-bordism}},
     journal = {Informatics and Automation},
     pages = {287--295},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a12/}
}
TY  - JOUR
AU  - Ivan Yu. Limonchenko
AU  - Zhi Lü
AU  - Taras E. Panov
TI  - Calabi--Yau hypersurfaces and SU-bordism
JO  - Informatics and Automation
PY  - 2018
SP  - 287
EP  - 295
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a12/
LA  - ru
ID  - TRSPY_2018_302_a12
ER  - 
%0 Journal Article
%A Ivan Yu. Limonchenko
%A Zhi Lü
%A Taras E. Panov
%T Calabi--Yau hypersurfaces and SU-bordism
%J Informatics and Automation
%D 2018
%P 287-295
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a12/
%G ru
%F TRSPY_2018_302_a12
Ivan Yu. Limonchenko; Zhi Lü; Taras E. Panov. Calabi--Yau hypersurfaces and SU-bordism. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 287-295. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a12/

[1] Batyrev V. V., “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebr. Geom., 3:3 (1994), 493–535 | MR

[2] V. M. Buchstaber, “Cobordisms, manifolds with torus action, and functional equations”, Proc. Steklov Inst. Math., 302 (2018), 48–87

[3] Buchstaber V. M., Panov T. E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR

[4] Buchstaber V., Panov T., Ray N., “Toric genera”, Int. Math. Res. Not., 2010:16 (2010), 3207–3262 | MR

[5] Conner P. E., Floyd E. E., Torsion in SU-bordism, Mem. AMS, no. 60, Amer. Math. Soc., Providence, RI, 1966 | MR

[6] Kreuzer M., Skarke H., Calabi–Yau data, http://hep.itp.tuwien.ac.at/k̃reuzer/CY/

[7] Lü Z., Panov T., “On toric generators in the unitary and special unitary bordism rings”, Algebr. Geom. Topol., 16:5 (2016), 2865–2893 | DOI | MR

[8] Mosley J. E., The greatest common divisor of multinomial coefficients, 2014, arXiv: 1411.0706 [math.NT] | MR

[9] Mosley J. E., In search of a class of representatives for SU-cobordism using the Witten genus, PhD Thesis, Univ. Kentucky, Lexington, 2016 | MR

[10] S. P. Novikov, “Homotopy properties of Thom complexes”, Mat. Sb., 57:4 (1962), 407–442

[11] Stong R. E., Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, NJ, 1968 | MR