Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_302_a12, author = {Ivan Yu. Limonchenko and Zhi L\"u and Taras E. Panov}, title = {Calabi--Yau hypersurfaces and {SU-bordism}}, journal = {Informatics and Automation}, pages = {287--295}, publisher = {mathdoc}, volume = {302}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a12/} }
Ivan Yu. Limonchenko; Zhi Lü; Taras E. Panov. Calabi--Yau hypersurfaces and SU-bordism. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 287-295. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a12/
[1] Batyrev V. V., “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebr. Geom., 3:3 (1994), 493–535 | MR
[2] V. M. Buchstaber, “Cobordisms, manifolds with torus action, and functional equations”, Proc. Steklov Inst. Math., 302 (2018), 48–87
[3] Buchstaber V. M., Panov T. E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR
[4] Buchstaber V., Panov T., Ray N., “Toric genera”, Int. Math. Res. Not., 2010:16 (2010), 3207–3262 | MR
[5] Conner P. E., Floyd E. E., Torsion in SU-bordism, Mem. AMS, no. 60, Amer. Math. Soc., Providence, RI, 1966 | MR
[6] Kreuzer M., Skarke H., Calabi–Yau data, http://hep.itp.tuwien.ac.at/k̃reuzer/CY/
[7] Lü Z., Panov T., “On toric generators in the unitary and special unitary bordism rings”, Algebr. Geom. Topol., 16:5 (2016), 2865–2893 | DOI | MR
[8] Mosley J. E., The greatest common divisor of multinomial coefficients, 2014, arXiv: 1411.0706 [math.NT] | MR
[9] Mosley J. E., In search of a class of representatives for SU-cobordism using the Witten genus, PhD Thesis, Univ. Kentucky, Lexington, 2016 | MR
[10] S. P. Novikov, “Homotopy properties of Thom complexes”, Mat. Sb., 57:4 (1962), 407–442
[11] Stong R. E., Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, NJ, 1968 | MR