Darboux system: Liouville reduction and an explicit solution
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 268-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of solutions to a Darboux system in $\mathbb R^3$ is introduced that satisfy the factorization condition for an auxiliary second-order linear problem. It is shown that this reduction provides the (local) solvability of the Darboux system, and an explicit solution is given to this problem for two types of dependent variables. Explicit formulas for the Lamé coefficients and solutions to the associated linear problem are constructed. It is shown that the reduction, known in the literature, to a weakly nonlinear system is a particular case of the approach proposed.
@article{TRSPY_2018_302_a11,
     author = {R. Ch. Kulaev and A. K. Pogrebkov and A. B. Shabat},
     title = {Darboux system: {Liouville} reduction and an explicit solution},
     journal = {Informatics and Automation},
     pages = {268--286},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a11/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
AU  - A. K. Pogrebkov
AU  - A. B. Shabat
TI  - Darboux system: Liouville reduction and an explicit solution
JO  - Informatics and Automation
PY  - 2018
SP  - 268
EP  - 286
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a11/
LA  - ru
ID  - TRSPY_2018_302_a11
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%A A. K. Pogrebkov
%A A. B. Shabat
%T Darboux system: Liouville reduction and an explicit solution
%J Informatics and Automation
%D 2018
%P 268-286
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a11/
%G ru
%F TRSPY_2018_302_a11
R. Ch. Kulaev; A. K. Pogrebkov; A. B. Shabat. Darboux system: Liouville reduction and an explicit solution. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 268-286. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a11/

[1] Bianchi L., Opere, v. 3, Sistemi tripli ortogonali, Ed. Cremonese, Roma, 1955 | MR

[2] Bogdanov L. V., Konopelchenko B. G., “Generalized integrable hierarchies and Combescure symmetry transformations”, J. Phys. A: Math. Gen., 30:5 (1997), 1591–1603 | DOI | MR

[3] Darboux G., Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1898 ; Darbu Zh. G., Lektsii ob ortogonalnykh sistemakh i krivolineinykh koordinatakh, In-t kompyut. issled., M.–Izhevsk, 2016 | MR

[4] V. S. Dryuma, “Geometrical properties of the multidimensional nonlinear differential equations and the Finsler metrics of phase spaces of dynamical systems”, Theor. Math. Phys., 99 (1994), 555–561 | DOI | MR

[5] B. A. Dubrovin, S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russ. Math. Surv., 44:6 (1989), 35–124 | DOI | MR

[6] Eisenhart L. P., A treatise on the differential geometry of curves and surfaces, Ginn and Co., Boston, 1909 ; Dover Publ., Mineola, NY, 2004 | MR

[7] Enriquez B., Orlov A. Yu., Rubtsov V. N., “Dispersionful analogues of Benney's equations and $N$-wave systems”, Inverse Probl., 12:3 (1996), 241–250 | DOI | MR

[8] E. V. Ferapontov, “Systems of three differential equations of hydrodynamic type with hexagonal 3-web of characteristics on the solutions”, Funct. Anal. Appl., 23 (1989), 151–153 | DOI | MR

[9] I. M. Krichever, “Algebraic-geometric $n$-orthogonal curvilinear coordinate systems and solutions of the associativity equations”, Funct. Anal. Appl., 31 (1997), 25–39 | DOI | DOI | MR

[10] M. V. Pavlov, Integrable systems of equations of hydrodynamic type, Cand. (Phys.-Math.) Dissertation, Lebedev Phys. Inst., Russ. Acad. Sci., M., 1992

[11] Pogrebkov A. K., “Symmetries of the Hirota difference equation”, SIGMA. Symmetry Integrability Geom. Methods Appl., 13 (2017), 053 | MR

[12] Pogrebkov A. K., Polivanov M. K., “The Liouville and sinh-Gordon equations. Singular solutions, dynamics of singularities and the inverse problem method”, Sov. Sci. Rev. Sect. C. Math. Phys. Rev., 5 (1985), 197–271 | MR

[13] Rogers C., Schief W. K., Bäcklund and Darboux transformations: Geometry and modern applications in soliton theory, Cambridge Univ. Press, Cambridge, 2002 | MR

[14] S. P. Tsarev, “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR, Izv., 37:2 (1991), 397–419 | DOI | MR

[15] Zakharov V. E., “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR

[16] V. E. Zakharov, S. V. Manakov, “Construction of higher-dimensional nonlinear integrable systems and of their solutions”, Funct. Anal. Appl., 19 (1985), 89–101 | DOI | MR