Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_302_a11, author = {R. Ch. Kulaev and A. K. Pogrebkov and A. B. Shabat}, title = {Darboux system: {Liouville} reduction and an explicit solution}, journal = {Informatics and Automation}, pages = {268--286}, publisher = {mathdoc}, volume = {302}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a11/} }
TY - JOUR AU - R. Ch. Kulaev AU - A. K. Pogrebkov AU - A. B. Shabat TI - Darboux system: Liouville reduction and an explicit solution JO - Informatics and Automation PY - 2018 SP - 268 EP - 286 VL - 302 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a11/ LA - ru ID - TRSPY_2018_302_a11 ER -
R. Ch. Kulaev; A. K. Pogrebkov; A. B. Shabat. Darboux system: Liouville reduction and an explicit solution. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 268-286. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a11/
[1] Bianchi L., Opere, v. 3, Sistemi tripli ortogonali, Ed. Cremonese, Roma, 1955 | MR
[2] Bogdanov L. V., Konopelchenko B. G., “Generalized integrable hierarchies and Combescure symmetry transformations”, J. Phys. A: Math. Gen., 30:5 (1997), 1591–1603 | DOI | MR
[3] Darboux G., Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1898 ; Darbu Zh. G., Lektsii ob ortogonalnykh sistemakh i krivolineinykh koordinatakh, In-t kompyut. issled., M.–Izhevsk, 2016 | MR
[4] V. S. Dryuma, “Geometrical properties of the multidimensional nonlinear differential equations and the Finsler metrics of phase spaces of dynamical systems”, Theor. Math. Phys., 99 (1994), 555–561 | DOI | MR
[5] B. A. Dubrovin, S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russ. Math. Surv., 44:6 (1989), 35–124 | DOI | MR
[6] Eisenhart L. P., A treatise on the differential geometry of curves and surfaces, Ginn and Co., Boston, 1909 ; Dover Publ., Mineola, NY, 2004 | MR
[7] Enriquez B., Orlov A. Yu., Rubtsov V. N., “Dispersionful analogues of Benney's equations and $N$-wave systems”, Inverse Probl., 12:3 (1996), 241–250 | DOI | MR
[8] E. V. Ferapontov, “Systems of three differential equations of hydrodynamic type with hexagonal 3-web of characteristics on the solutions”, Funct. Anal. Appl., 23 (1989), 151–153 | DOI | MR
[9] I. M. Krichever, “Algebraic-geometric $n$-orthogonal curvilinear coordinate systems and solutions of the associativity equations”, Funct. Anal. Appl., 31 (1997), 25–39 | DOI | DOI | MR
[10] M. V. Pavlov, Integrable systems of equations of hydrodynamic type, Cand. (Phys.-Math.) Dissertation, Lebedev Phys. Inst., Russ. Acad. Sci., M., 1992
[11] Pogrebkov A. K., “Symmetries of the Hirota difference equation”, SIGMA. Symmetry Integrability Geom. Methods Appl., 13 (2017), 053 | MR
[12] Pogrebkov A. K., Polivanov M. K., “The Liouville and sinh-Gordon equations. Singular solutions, dynamics of singularities and the inverse problem method”, Sov. Sci. Rev. Sect. C. Math. Phys. Rev., 5 (1985), 197–271 | MR
[13] Rogers C., Schief W. K., Bäcklund and Darboux transformations: Geometry and modern applications in soliton theory, Cambridge Univ. Press, Cambridge, 2002 | MR
[14] S. P. Tsarev, “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR, Izv., 37:2 (1991), 397–419 | DOI | MR
[15] Zakharov V. E., “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR
[16] V. E. Zakharov, S. V. Manakov, “Construction of higher-dimensional nonlinear integrable systems and of their solutions”, Funct. Anal. Appl., 19 (1985), 89–101 | DOI | MR