Chern--Simons action and disclinations
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 124-143

Voir la notice de l'article provenant de la source Math-Net.Ru

We review the main properties of the Chern–Simons and Hilbert–Einstein actions on a three-dimensional manifold with Riemannian metric and torsion. We show a connection between these actions that is based on the gauge model for the inhomogeneous rotation group. The exact solution of the Euler–Lagrange equations is found for the Chern–Simons action with the linear source. This solution is proved to describe one straight linear disclination in the geometric theory of defects.
@article{TRSPY_2018_301_a9,
     author = {M. O. Katanaev},
     title = {Chern--Simons action and disclinations},
     journal = {Informatics and Automation},
     pages = {124--143},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a9/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Chern--Simons action and disclinations
JO  - Informatics and Automation
PY  - 2018
SP  - 124
EP  - 143
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a9/
LA  - ru
ID  - TRSPY_2018_301_a9
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Chern--Simons action and disclinations
%J Informatics and Automation
%D 2018
%P 124-143
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a9/
%G ru
%F TRSPY_2018_301_a9
M. O. Katanaev. Chern--Simons action and disclinations. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 124-143. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a9/