Chern--Simons action and disclinations
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 124-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

We review the main properties of the Chern–Simons and Hilbert–Einstein actions on a three-dimensional manifold with Riemannian metric and torsion. We show a connection between these actions that is based on the gauge model for the inhomogeneous rotation group. The exact solution of the Euler–Lagrange equations is found for the Chern–Simons action with the linear source. This solution is proved to describe one straight linear disclination in the geometric theory of defects.
@article{TRSPY_2018_301_a9,
     author = {M. O. Katanaev},
     title = {Chern--Simons action and disclinations},
     journal = {Informatics and Automation},
     pages = {124--143},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a9/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Chern--Simons action and disclinations
JO  - Informatics and Automation
PY  - 2018
SP  - 124
EP  - 143
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a9/
LA  - ru
ID  - TRSPY_2018_301_a9
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Chern--Simons action and disclinations
%J Informatics and Automation
%D 2018
%P 124-143
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a9/
%G ru
%F TRSPY_2018_301_a9
M. O. Katanaev. Chern--Simons action and disclinations. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 124-143. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a9/

[1] Alekseev G. A., “Collision of strong gravitational and electromagnetic waves in the expanding universe”, Phys. Rev. D, 93:6 (2016), 061501 | DOI | MR

[2] Bilby B. A., Bullough R., Smith E., “Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry”, Proc. R. Soc. London A, 231 (1955), 263–273 | DOI | MR

[3] Bouchard V., Florea B., Mariño M., “Counting higher genus curves with crosscaps in Calabi–Yau orientifolds”, J. High Energy Phys., 2004:12 (2004), 035 | DOI | MR

[4] Chern S.-s., Simons J., “Characteristic forms and geometric invariants”, Ann. Math. Ser. 2, 99:1 (1974), 48–69 | DOI | MR | Zbl

[5] A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439 | DOI | DOI | MR | Zbl

[6] A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409 | DOI | DOI | MR | Zbl

[7] M. O. Katanaev, “Wedge dislocation in the geometric theory of defects”, Theor. Math. Phys., 135:2 (2003), 733–744 | DOI | DOI | MR | MR | Zbl

[8] M. O. Katanaev, “One-dimensional topologically nontrivial solutions in the Skyrme model”, Theor. Math. Phys., 138:2 (2004), 163–176 | DOI | DOI | MR | MR | Zbl

[9] M. O. Katanaev, “Geometric theory of defects”, Phys. Usp., 48:7 (2005), 675–701 | DOI | DOI

[10] Katanaev M. O., “On homogeneous and isotropic universe”, Mod. Phys. Lett. A, 30:34 (2015), 1550186 ; arXiv: 1511.00991[gr-qc] | DOI | MR | Zbl

[11] M. O. Katanaev, “Lorentz invariant vacuum solutions in general relativity”, Proc. Steklov Inst. Math., 290 (2015), 138–142 | DOI | DOI | MR | Zbl

[12] Katanaev M. O., Geometricheskie metody v matematicheskoi fizike, E-print, 2016, arXiv: 1311.0733v3[math-ph]

[13] M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700 ; arXiv: 1610.05628[gr-qc] | DOI | DOI

[14] Katanaev M. O., “Chern–Simons term in the geometric theory of defects”, Phys. Rev. D, 96:8 (2017), 084054 ; arXiv: 1705.07888[math-ph] | DOI

[15] Katanaev M. O., Volovich I. V., “Theory of defects in solids and three-dimensional gravity”, Ann. Phys., 216:1 (1992), 1–28 | DOI | MR | Zbl

[16] Katanaev M. O., Volovich I. V., “Scattering on dislocations and cosmic strings in the geometric theory of defects”, Ann. Phys., 271:2 (1999), 203–232 | DOI | MR | Zbl

[17] Kleinert H., Multivalued fields in condenced matter, electromagnetism, and gravitation, World Scientific, Singapore, 2008 | MR

[18] Kondo K., “On the geometrical and physical foundations of the theory of yielding”, Proc. 2nd Japan Natl. Congr. for Applied Mechanics (1952), Sci. Counc. Japan, Japan Natl. Committee Theor. Appl. Mech., Tokyo, 1953, 41–47 | MR

[19] Kröner E., Kontinuumstheorie der Versetzungen und Eigenspannungen, Springer, Berlin, 1958 | MR | Zbl

[20] Nye J. F., “Some geometrical relations in dislocated crystals”, Acta metall., 1 (1953), 153–162 | DOI

[21] V. P. Pavlov, V. M. Sergeev, “Fluid dynamics and thermodynamics as a unified field theory”, Proc. Steklov Inst. Math., 294 (2016), 222–232 | DOI | DOI | MR

[22] M. Schlichenmaier, O. K. Sheinman, “Wess–Zumino–Witten–Novikov theory, Knizhnik–Zamolodchikov equations, and Krichever–Novikov algebras”, Russ. Math. Surv., 54:1 (1999), 213–249 | DOI | DOI | MR | Zbl

[23] V. S. Vladimirov, Equations of Mathematical Physics, M. Dekker, New York, 1971 | MR | MR | Zbl

[24] Witten E., “$2+1$ dimensional gravity as an exactly soluble system”, Nucl. Phys. B, 311:1 (1988), 46–78 | DOI | MR

[25] V. V. Zharinov, “Conservation laws, differential identities, and constraints of partial differential equations”, Theor. Math. Phys., 185:2 (2015), 1557–1581 | DOI | DOI | MR | Zbl

[26] V. V. Zharinov, “Bäcklund transformations”, Theor. Math. Phys., 189:3 (2016), 1681–1692 | DOI | DOI | MR | Zbl