Asymptotically homogeneous generalized functions and some of their applications
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 74-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

A brief description is given of generalized functions that are asymptotically homogeneous at the origin with respect to a multiplicative one-parameter transformation group such that the real parts of all eigenvalues of the infinitesimal matrix are positive. The generalized functions that are homogeneous with respect to such a group are described in full. Examples of the application of such functions in mathematical physics are given; in particular, they can be used to construct asymptotically homogeneous solutions of differential equations whose symbols are homogeneous polynomials with respect to such a group, as well as to study the singularities of holomorphic functions in tubular domains over cones.
Keywords: generalized functions, homogeneous functions, quasiasymptotics, partial differential equations.
@article{TRSPY_2018_301_a5,
     author = {Yu. N. Drozhzhinov},
     title = {Asymptotically homogeneous generalized functions and some of their applications},
     journal = {Informatics and Automation},
     pages = {74--90},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a5/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
TI  - Asymptotically homogeneous generalized functions and some of their applications
JO  - Informatics and Automation
PY  - 2018
SP  - 74
EP  - 90
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a5/
LA  - ru
ID  - TRSPY_2018_301_a5
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%T Asymptotically homogeneous generalized functions and some of their applications
%J Informatics and Automation
%D 2018
%P 74-90
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a5/
%G ru
%F TRSPY_2018_301_a5
Yu. N. Drozhzhinov. Asymptotically homogeneous generalized functions and some of their applications. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 74-90. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a5/

[1] I. Ya. Aref'eva, I. V. Volovich, S. V. Kozyrev, “Stochastic limit method and interference in quantum many-particle systems”, Theor. Math. Phys., 183:3 (2015), 782–799 | DOI | DOI | MR | Zbl

[2] Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions”, Russ. Math. Surv., 71:6 (2016), 1081–1134 | DOI | DOI | MR | Zbl

[3] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Generalized functions asymptotically homogeneous along special transformation groups”, Sb. Math., 200:6 (2009), 803–844 | DOI | DOI | MR | Zbl

[4] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Distributions asymptotically homogeneous along the trajectories determined by one-parameter groups”, Izv. Math., 76:3 (2012), 466–516 | DOI | DOI | MR | Zbl

[5] Drozhzhinov Yu. N., Zavialov B. I., “Homogeneous generalized functions with respect to one-parametric group”, $p$-Adic Numbers Ultrametric Anal. Appl., 4:1 (2012), 64–75 | DOI | MR | Zbl

[6] Yu. N. Drozhzhinov, B. I. Zavialov, “Generalized functions asymptotically homogeneous with respect to one-parametric group at origin”, Ufa Math. J., 5:1 (2013), 17–35 | DOI | MR | Zbl

[7] Yu. N. Drozhzhinov, B. I. Zavialov, “Asymptotically homogeneous solutions to differential equations with homogeneous polynomial symbols with respect to a multiplicative one-parameter group”, Proc. Steklov Inst. Math., 285 (2014), 99–119 | DOI | MR | Zbl

[8] Yu. N. Drozhzhinov, B. I. Zavialov, “Tauberian comparison theorems and hyperbolic operators with constant coefficients”, Ufa Math. J., 7:3 (2015), 47–53 | DOI | MR

[9] I. M. Gel'fand, G. E. Shilov, Generalized Functions, v. 1, Properties and Operations, Academic, New York, 1964 | MR | MR | Zbl

[10] A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439 | DOI | DOI | MR | Zbl

[11] Hörmander L., “On the division of distributions by polynomials”, Ark. Mat., 3:6 (1958), 555–568 | DOI | MR | Zbl

[12] M. O. Katanaev, “Lorentz invariant vacuum solutions in general relativity”, Proc. Steklov Inst. Math., 290 (2015), 138–142 | DOI | DOI | MR | Zbl

[13] M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700 | DOI | DOI

[14] Pechen A., Trushechkin A., “Measurement-assisted Landau–Zener transitions”, Phys. Rev. A, 91:5 (2015), 052316 ; arXiv: 1506.08323[quant-ph] | DOI

[15] E. Seneta, Regularly Varying Functions, Springer, Berlin, 1976 | MR | MR | Zbl

[16] V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zav'yalov, Tauberian Theorems for Generalized Functions, Kluwer, Dordrecht, 1988 | MR | MR | Zbl

[17] I. V. Volovich, S. V. Kozyrev, “Manipulation of states of a degenerate quantum system”, Proc. Steklov Inst. Math., 294 (2016), 241–251 | DOI | DOI | MR | Zbl

[18] V. V. Zharinov, “Bäcklund transformations”, Theor. Math. Phys., 189:3 (2016), 1681–1692 | DOI | DOI | MR | Zbl