Potentials on a~compact Riemann surface
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 287-319

Voir la notice de l'article provenant de la source Math-Net.Ru

Fundamental concepts of potential theory on compact Riemann surfaces are defined that generalize the corresponding concepts of logarithmic potential theory on the complex plane. The standard properties of these quantities are proved, and relationships between them are established.
@article{TRSPY_2018_301_a20,
     author = {E. M. Chirka},
     title = {Potentials on a~compact {Riemann} surface},
     journal = {Informatics and Automation},
     pages = {287--319},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a20/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Potentials on a~compact Riemann surface
JO  - Informatics and Automation
PY  - 2018
SP  - 287
EP  - 319
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a20/
LA  - ru
ID  - TRSPY_2018_301_a20
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Potentials on a~compact Riemann surface
%J Informatics and Automation
%D 2018
%P 287-319
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a20/
%G ru
%F TRSPY_2018_301_a20
E. M. Chirka. Potentials on a~compact Riemann surface. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 287-319. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a20/