Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_301_a2, author = {I. V. Volovich and V. Zh. Sakbaev}, title = {On quantum dynamics on $C^*$-algebras}, journal = {Informatics and Automation}, pages = {33--47}, publisher = {mathdoc}, volume = {301}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a2/} }
I. V. Volovich; V. Zh. Sakbaev. On quantum dynamics on $C^*$-algebras. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 33-47. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a2/
[1] Accardi L., Lu Y. G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | MR | Zbl
[2] G. G. Amosov, V. Zh. Sakbaev, “Geometric properties of systems of vector states and expansion of states in Pettis integrals”, St. Petersburg Math. J., 27:4 (2016), 589–597 | DOI | MR | Zbl
[3] I. Ya. Aref'eva, “Formation time of quark–gluon plasma in heavy-ion collisions in the holographic shock wave model”, Theor. Math. Phys., 184:3 (2015), 1239–1255 | DOI | DOI | MR | Zbl
[4] Aref'eva I. Ya., Khramtsov M. A., “AdS/CFT prescription for angle-deficit space and winding geodesics”, J. High Energy Phys., 2016:4 (2016), 121 | MR
[5] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics, v. 1, $C^*$- and $W^*$-algebras, symmetry groups, decomposition of states, Springer, New York, 1979 | MR | Zbl
[6] N. Dunford, J. T. Schwartz, Linear Operators, v. 1, General Theory, Interscience, New York, 1958 | MR | Zbl
[7] Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions”, Russ. Math. Surv., 71:6 (2016), 1081–1134 | DOI | DOI | MR | Zbl
[8] M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700 | DOI | DOI
[9] V. V. Kozlov, “Invariant measures of smooth dynamical systems, generalized functions and summation methods”, Izv. Math., 80:2 (2016), 342–358 | DOI | DOI | MR | Zbl
[10] V. V. Kozlov, D. V. Treschev, “Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics”, Sb. Math., 207:10 (2016), 1435–1449 | DOI | DOI | MR
[11] Neidhardt H., Zagrebnov V. A., “On semibounded restrictions of self-adjoint operators”, Integral Eqns. Oper. Theory, 31:4 (1998), 489–512 | DOI | MR | Zbl
[12] A. Yu. Neklyudov, “Inversion of Chernoff's theorem”, Math. Notes, 83:4 (2008), 530–538 | DOI | DOI | MR | Zbl
[13] Ohya M., Volovich I., Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Springer, New York, 2011 | MR | Zbl
[14] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158 | DOI | DOI | MR
[15] A. N. Pechen, N. B. Il'in, “On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements”, Proc. Steklov Inst. Math., 294 (2016), 233–240 | DOI | DOI | MR | Zbl
[16] V. Zh. Sakbaev, “Spectral aspects of regularization of the Cauchy problem for a degenerate equation”, Proc. Steklov Inst. Math., 261 (2008), 253–261 | DOI | MR | Zbl
[17] V. Zh. Sakbaev, “Averaging of quantum dynamical semigroups”, Theor. Math. Phys., 164:3 (2010), 1215–1221 | DOI | DOI | Zbl
[18] V. Zh. Sakbaev, “The set of quantum states and its averaged dynamic transformations”, Russ. Math., 55:10 (2011), 41–50 | DOI | MR | Zbl
[19] V. Zh. Sakbaev, “Cauchy Problem for Degenerating Linear Differential Equations and Averaging of Approximating Regularizations”, J. Math. Sci., 213:3 (2016), 287–459 | DOI | MR | Zbl
[20] V. Zh. Sakbaev, “On dynamical properties of a one-parameter family of transformations arising in averaging of semigroups”, J. Math. Sci., 202:6 (2014), 869–886 | DOI | MR | Zbl
[21] V. Zh. Sakbaev, “On the law of large numbers for compositions of independent random semigroups”, Russ. Math., 60:10 (2016), 72–76 | DOI | MR
[22] Sakbaev V. Zh., Volovich I. V., “Self-adjoint approximations of the degenerate Schrödinger operator”, $p$-Adic Numbers Ultrametric Anal. Appl., 9:1 (2017), 39–52 | DOI | MR | Zbl
[23] I. E. Segal, Mathematical Problems of Relativistic Physics, Am. Math. Soc., Providence, RI, 1963 | MR | MR | Zbl
[24] Trushechkin A., “Semiclassical evolution of quantum wave packets on the torus beyond the Ehrenfest time in terms of Husimi distributions”, J. Math. Phys., 58:6 (2017), 062102 | DOI | MR | Zbl
[25] Trushechkin A. S., Volovich I. V., “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, Europhys. Lett., 113:3 (2016), 30005 | DOI
[26] Volkov B. O., “Stochastic Lévy differential operators and Yang–Mills equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20:2 (2017), 1750008 | DOI | MR | Zbl
[27] Volovich I. V., “Cauchy–Schwarz inequality-based criteria for the non-classicality of sub-Poisson and antibunched light”, Phys. Lett. A, 380:1–2 (2016), 56–58 | DOI | MR | Zbl
[28] I. V. Volovich, S. V. Kozyrev, “Manipulation of states of a degenerate quantum system”, Proc. Steklov Inst. Math., 294 (2016), 241–251 | DOI | DOI | MR | Zbl
[29] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Amer. Math. Soc., 72 (1952), 46–66 | DOI | MR | Zbl