Hermite--Pad\'e approximants of the Mittag-Leffler functions
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 241-258
Voir la notice de l'article provenant de la source Math-Net.Ru
The convergence rate of type II Hermite–Padé approximants for a system of degenerate hypergeometric functions $\{_1F_1(1,\gamma;\lambda_jz)\}_{j=1}^k$ is found in the case when the numbers $\{\lambda_j\}_{j=1}^k$ are the roots of the equation $\lambda^k=1$ or real numbers and $\gamma\in\mathbb C\setminus\{0,-1,-2,\dots\}$. More general statements are obtained for approximants of this type (including nondiagonal ones) in the case of $k=2$. The theorems proved in the paper complement and generalize the results obtained earlier by other authors.
Keywords:
Hermite–Padé polynomials, asymptotic equalities, Laplace method, saddle-point method.
Mots-clés : Hermite–Padé approximants
Mots-clés : Hermite–Padé approximants
@article{TRSPY_2018_301_a17,
author = {A. P. Starovoitov},
title = {Hermite--Pad\'e approximants of the {Mittag-Leffler} functions},
journal = {Informatics and Automation},
pages = {241--258},
publisher = {mathdoc},
volume = {301},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a17/}
}
A. P. Starovoitov. Hermite--Pad\'e approximants of the Mittag-Leffler functions. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 241-258. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a17/