Complete diagnostic length~$2$ tests for logic networks under inverse faults of logic gates
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 219-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any Boolean function can be implemented by a logic network in the basis $\{x\,\\,y\,\\,z,x\oplus y,1\}$ in such a way that this logic network admits a complete diagnostic test of length at most $2$ with respect to inverse faults at the outputs of logic gates.
@article{TRSPY_2018_301_a15,
     author = {K. A. Popkov},
     title = {Complete diagnostic length~$2$ tests for logic networks under inverse faults of logic gates},
     journal = {Informatics and Automation},
     pages = {219--224},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a15/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Complete diagnostic length~$2$ tests for logic networks under inverse faults of logic gates
JO  - Informatics and Automation
PY  - 2018
SP  - 219
EP  - 224
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a15/
LA  - ru
ID  - TRSPY_2018_301_a15
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Complete diagnostic length~$2$ tests for logic networks under inverse faults of logic gates
%J Informatics and Automation
%D 2018
%P 219-224
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a15/
%G ru
%F TRSPY_2018_301_a15
K. A. Popkov. Complete diagnostic length~$2$ tests for logic networks under inverse faults of logic gates. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 219-224. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a15/

[1] I. A. Chegis, S. V. Yablonskii, “Logical methods of control of work of electric schemes”, Tr. Mat. Inst. im. V. A. Steklova, Akad. Nauk SSSR, 51, 1958, 270–360 | MR | Zbl

[2] S. V. Kovatsenko, “Synthesis of easily tested circuits in the Zhegalkin basis for inverse faults”, Vestn. Mosk. Univ. Ser. Vychisl. Mat. Kibern., 2000, no. 2, 45–47 | Zbl

[3] O. B. Lupanov, Asymptotic Estimates of Complexity of Control Systems, Mosk. Gos. Univ., Moscow, 1984 (in Russian)

[4] N. P. Red'kin, Reliability and Diagnostics of Circuits, Mosk. Gos. Univ., Moscow, 1992 (in Russian)

[5] N. P. Red'kin, “On single fault detection tests for circuits with inverse faults of elements”, XII Int. Conf. on Problems of Theoretical Cybernetics (Nizhni Novgorod, 1999), Abstracts, Mekh.-Mat. Fak. Mosk. Gos. Univ., Moscow, 1999, 196

[6] N. P. Red'kin, “Single fault detection tests for circuits with inverse faults of elements”, Mathematical Problems of Cybernetics, 12, Fizmatlit, Moscow, 2003, 217–230 (in Russian)

[7] D. S. Romanov, “Synthesis of circuits admitting complete checking tests of constant length under inverse faults at outputs of elements”, Moscow Univ. Comput. Math. Cybern., 39:1 (2015), 26–34 | DOI | MR | Zbl

[8] D. S. Romanov, “A method of synthesis of irredundant circuits (in Zhegalkin's basis) admitting single fault diagnostic test sets with cardinality 1”, Izv. Vyssh. Uchebn. Zaved. Povolzhsk. Reg. Fiz.-Mat. Nauki, 2015, no. 4, 38–54

[9] D. S. Romanov, “A method of synthesis of irredundant circuits (in a standard basis) admitting single fault diagnostic test sets with cardinality 2”, Izv. Vyssh. Uchebn. Zaved. Povolzhsk. Reg. Fiz.-Mat. Nauki, 2016, no. 3, 56–72 | MR | Zbl

[10] S. V. Yablonskii, “Reliability and monitoring of control systems”, Proc. All-Union Seminar on Discrete Mathematics and Its Applications (Moscow, Jan. 31 – Feb. 2, 1984), Mosk. Gos. Univ., Moscow, 1986, 7–12 (in Russian) | MR

[11] S. V. Yablonskii, “Some problems of reliability and monitoring of control circuits”, Mathematical Problems of Cybernetics, 1, Nauka, Moscow, 1988, 5–25 (in Russian)