On the supports of vector equilibrium measures in the Angelesco problem with nested intervals
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 192-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

A vector logarithmic-potential equilibrium problem with the Angelesco interaction matrix is considered for two nested intervals with a common endpoint. The ratio of the lengths of the intervals is a parameter of the problem, and another parameter is the ratio of the masses of the components of the vector equilibrium measure. Two cases are distinguished, depending on the relations between the parameters. In the first case, the equilibrium measure is described by a meromorphic function on a three-sheeted Riemann surface of genus zero, and the supports of the components do not overlap and are connected. In the second case, a solution to the equilibrium problem is found in terms of a meromorphic function on a six-sheeted surface of genus one, and the supports overlap and are not connected.
@article{TRSPY_2018_301_a13,
     author = {V. G. Lysov and D. N. Tulyakov},
     title = {On the supports of vector equilibrium measures in the {Angelesco} problem with nested intervals},
     journal = {Informatics and Automation},
     pages = {192--208},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a13/}
}
TY  - JOUR
AU  - V. G. Lysov
AU  - D. N. Tulyakov
TI  - On the supports of vector equilibrium measures in the Angelesco problem with nested intervals
JO  - Informatics and Automation
PY  - 2018
SP  - 192
EP  - 208
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a13/
LA  - ru
ID  - TRSPY_2018_301_a13
ER  - 
%0 Journal Article
%A V. G. Lysov
%A D. N. Tulyakov
%T On the supports of vector equilibrium measures in the Angelesco problem with nested intervals
%J Informatics and Automation
%D 2018
%P 192-208
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a13/
%G ru
%F TRSPY_2018_301_a13
V. G. Lysov; D. N. Tulyakov. On the supports of vector equilibrium measures in the Angelesco problem with nested intervals. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 192-208. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a13/

[1] Angelesco A., “Sur deux extensions des fractions continues algébriques”, C. r. Acad. sci. Paris, 168 (1919), 262–265 | Zbl

[2] A. I. Aptekarev, “Asymptotics of simultaneously orthogonal polynomials in the Angelesco case”, Math. USSR-Sb., 64:1 (1989), 57–84 | DOI | MR | Zbl | Zbl

[3] Aptekarev A. I., “The Mhaskar–Saff variational principle and location of the shocks of certain hyperbolic equations”, Modern trends in constructive function theory, Contemp. Math., 661, Amer. Math. Soc., Providence, RI, 2016, 167–186 | DOI | MR | Zbl

[4] A. I. Aptekarev, S. A. Denisov, M. L. Yattselev, Completely integrable potentials on $\mathbb Z_+^d$ for electromagnetic Schrödinger operator: Ray asymptotics and scattering problem, Preprint No. 88, Keldysh Inst. Appl. Math., Moscow, 2015

[5] A. I. Aptekarev, S. A. Denisov, M. L. Yattselev, Selfadjoint Jacobi matrices on graphs and multiple orthogonal polynomials, Preprint No. 3, Keldysh Inst. Appl. Math., Moscow, 2018

[6] Aptekarev A. I., Derevyagin M., Miki H., Van Assche W., “Multidimensional Toda lattices: continuous and discrete time”, SIGMA. Symmetry Integrability Geom. Methods Appl., 12 (2016), 054 | DOI | MR | Zbl

[7] Aptekarev A. I., Derevyagin M., Van Assche W., “On 2D discrete Schrödinger operators associated with multiple orthogonal polynomials”, J. Phys. A: Math. Theor., 48:6 (2015), 065201 | DOI | MR

[8] Aptekarev A. I., Derevyagin M., Van Assche W., “Discrete integrable systems generated by Hermite–Padé approximants”, Nonlinearity, 29:5 (2016), 1487–1506 | DOI | MR | Zbl

[9] A. I. Aptekarev, V. A. Kalyagin, Asymptotic behavior of an $n$th degree root of polynomials of simultaneous orthogonality, and algebraic functions, Preprint No. 60, Keldysh Inst. Appl. Math., Moscow, 1986

[10] Aptekarev A. I., Kalyagin V. A., Lysov V. G., Toulyakov D. N., “Equilibrium of vector potentials and uniformization of the algebraic curves of genus 0”, J. Comput. Appl. Math., 233:3 (2009), 602–616 | DOI | MR | Zbl

[11] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl

[12] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, Three-sheeted Riemann surfaces of genus 0 with fixed projections of the branch points, Preprint No. 13, Keldysh Inst. Appl. Math., Moscow, 2007

[13] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials”, Sb. Math., 202:2 (2011), 155–206 | DOI | DOI | MR | Zbl

[14] Aptekarev A. I., Van Assche W., Yattselev M. L., “Hermite–Padé approximants for a pair of Cauchy transforms with overlapping symmetric supports”, Commun. Pure Appl. Math., 70:3 (2017), 444–510 | DOI | MR | Zbl

[15] Beckermann B., Kalyagin V., Matos A. C., Wielonsky F., “Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses”, Constr. Approx., 37:1 (2013), 101–134 | DOI | MR | Zbl

[16] V. I. Buslaev, S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials”, Proc. Steklov Inst. Math., 290 (2015), 256–263 | DOI | DOI | MR | Zbl

[17] A. A. Gonchar, E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl

[18] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russ. Math. Surv., 40:4 (1985), 183–184 | DOI | MR | MR | Zbl

[19] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl

[20] V. A. Kaljagin, “On a class of polynomials defined by two orthogonality relations”, Math. USSR-Sb., 38:4 (1981), 563–580 | DOI | MR | Zbl

[21] A. V. Komlov, S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials”, Russ. Math. Surv., 70:6 (2015), 1179–1181 | DOI | DOI | MR | Zbl

[22] M. A. Lapik, “Families of vector measures which are equilibrium measures in an external field”, Sb. Math., 206:2 (2015), 211–224 | DOI | DOI | MR | Zbl

[23] M. A. Lapik, The extremal functional for vector extremal logarithmic potential problem with external field and Angelesco matrix of interaction, Preprint No. 83, Keldysh Inst. Appl. Math., Moscow, 2015

[24] V. G. Lysov, D. N. Tulyakov, “On a vector potential-theory equilibrium problem with the Angelesco matrix”, Proc. Steklov Inst. Math., 298 (2017), 170–200 | DOI | DOI | MR | Zbl

[25] E. M. Nikishin, V. N. Sorokin, Rational Approximations and Orthogonality, Am. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl

[26] E. A. Rakhmanov, “The asymptotics of Hermite–Padé polynomials for two Markov-type functions”, Sb. Math., 202:1 (2011), 127–134 | DOI | DOI | MR | Zbl

[27] V. N. Sorokin, “On multiple orthogonal polynomials for discrete Meixner measures”, Sb. Math., 201:10 (2010), 1539–1561 | DOI | DOI | MR | Zbl

[28] V. N. Sorokin, “On multiple orthogonal polynomials for three Meixner measures”, Proc. Steklov Inst. Math., 298 (2017), 294–316 | DOI | DOI | MR | Zbl

[29] S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russ. Math. Surv., 70:5 (2015), 901–951 | DOI | DOI | MR | Zbl

[30] S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261 | DOI | DOI

[31] Yattselev M. L., “Strong asymptotics of Hermite–Padé approximants for Angelesco systems”, Can. J. Math., 68:5 (2016), 1159–1201 | DOI | MR | Zbl