On expanding neighborhoods of local universality of Gaussian unitary ensembles
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 182-191

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical universality theorem states that the Christoffel–Darboux kernel of the Hermite polynomials scaled by a factor of $1/\sqrt n$ tends to the sine kernel in local variables $\widetilde x,\widetilde y$ in a neighborhood of a point $x^*\in(-\sqrt2,\sqrt2)$. This classical result is well known for $\widetilde x,\widetilde y\in K\Subset\mathbb R$. In this paper, we show that this classical result remains valid for expanding compact sets $K=K(n)$. An interesting phenomenon of admissible dependence of the expansion rate of compact sets $K(n)$ on $x^*$ is established. For $x^*\in(-\sqrt2,\sqrt2)\setminus\{0\}$ and for $x^*=0$, there are different growth regimes of compact sets $K(n)$. A transient regime is found.
@article{TRSPY_2018_301_a12,
     author = {M. A. Lapik and D. N. Tulyakov},
     title = {On expanding neighborhoods of local universality of {Gaussian} unitary ensembles},
     journal = {Informatics and Automation},
     pages = {182--191},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a12/}
}
TY  - JOUR
AU  - M. A. Lapik
AU  - D. N. Tulyakov
TI  - On expanding neighborhoods of local universality of Gaussian unitary ensembles
JO  - Informatics and Automation
PY  - 2018
SP  - 182
EP  - 191
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a12/
LA  - ru
ID  - TRSPY_2018_301_a12
ER  - 
%0 Journal Article
%A M. A. Lapik
%A D. N. Tulyakov
%T On expanding neighborhoods of local universality of Gaussian unitary ensembles
%J Informatics and Automation
%D 2018
%P 182-191
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a12/
%G ru
%F TRSPY_2018_301_a12
M. A. Lapik; D. N. Tulyakov. On expanding neighborhoods of local universality of Gaussian unitary ensembles. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 182-191. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a12/