Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_301_a12, author = {M. A. Lapik and D. N. Tulyakov}, title = {On expanding neighborhoods of local universality of {Gaussian} unitary ensembles}, journal = {Informatics and Automation}, pages = {182--191}, publisher = {mathdoc}, volume = {301}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a12/} }
TY - JOUR AU - M. A. Lapik AU - D. N. Tulyakov TI - On expanding neighborhoods of local universality of Gaussian unitary ensembles JO - Informatics and Automation PY - 2018 SP - 182 EP - 191 VL - 301 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a12/ LA - ru ID - TRSPY_2018_301_a12 ER -
M. A. Lapik; D. N. Tulyakov. On expanding neighborhoods of local universality of Gaussian unitary ensembles. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 182-191. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a12/
[1] Aptekarev A. I., Bleher P. M., Kuijlaars A. B. J., “Large $n$ limit of Gaussian random matrices with external source. II”, Commun. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl
[2] A. I. Aptekarev, A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russ. Math. Surv., 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl
[3] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl
[4] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source”, Theor. Math. Phys., 159:1 (2009), 448–468 | DOI | DOI | MR | Zbl
[5] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials”, Sb. Math., 202:2 (2011), 155–206 | DOI | DOI | MR | Zbl
[6] A. I. Aptekarev, D. N. Tulyakov, “Asymptotics of Meixner polynomials and Christoffel–Darboux kernels”, Trans. Moscow Math. Soc., 2012 (2012), 67–106 | MR | Zbl
[7] Bufetov A. I., Qiu Y., “Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions”, C. r. Math. Acad. sci. Paris, 353:6 (2015), 551–555 | DOI | MR | Zbl
[8] Deift P., Orthogonal polynomials and random matrices: A Riemann–Hilbert approach, Courant Lect. Notes Math., 3, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl
[9] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Commun. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[10] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “Convergence of Shafer quadratic approximants”, Russ. Math. Surv., 71:2 (2016), 373–375 | DOI | DOI | MR | Zbl
[11] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russ. Math. Surv., 72:4 (2017), 671–706 | DOI | DOI | MR | Zbl
[12] A. V. Komlov, S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials”, Russ. Math. Surv., 70:6 (2015), 1179–1181 | DOI | DOI | MR | Zbl
[13] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium energy and the $S$-property of stationary compact sets”, Sb. Math., 202:12 (2011), 1831–1852 | DOI | DOI | MR | Zbl
[14] M. L. Mehta, Random Matrices, Elsevier, Amsterdam, 2004 | MR | Zbl
[15] Pastur L., Shcherbina M., “Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles”, J. Stat. Phys., 86:1–2 (1997), 109–147 | DOI | MR | Zbl
[16] Szegő G., Orthogonal polynomials, Amer. Math. Soc., New York, 1959 | MR | Zbl