On expanding neighborhoods of local universality of Gaussian unitary ensembles
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 182-191
Voir la notice de l'article provenant de la source Math-Net.Ru
The classical universality theorem states that the Christoffel–Darboux kernel of the Hermite polynomials scaled by a factor of $1/\sqrt n$ tends to the sine kernel in local variables $\widetilde x,\widetilde y$ in a neighborhood of a point $x^*\in(-\sqrt2,\sqrt2)$. This classical result is well known for $\widetilde x,\widetilde y\in K\Subset\mathbb R$. In this paper, we show that this classical result remains valid for expanding compact sets $K=K(n)$. An interesting phenomenon of admissible dependence of the expansion rate of compact sets $K(n)$ on $x^*$ is established. For $x^*\in(-\sqrt2,\sqrt2)\setminus\{0\}$ and for $x^*=0$, there are different growth regimes of compact sets $K(n)$. A transient regime is found.
@article{TRSPY_2018_301_a12,
author = {M. A. Lapik and D. N. Tulyakov},
title = {On expanding neighborhoods of local universality of {Gaussian} unitary ensembles},
journal = {Informatics and Automation},
pages = {182--191},
publisher = {mathdoc},
volume = {301},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a12/}
}
TY - JOUR AU - M. A. Lapik AU - D. N. Tulyakov TI - On expanding neighborhoods of local universality of Gaussian unitary ensembles JO - Informatics and Automation PY - 2018 SP - 182 EP - 191 VL - 301 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a12/ LA - ru ID - TRSPY_2018_301_a12 ER -
M. A. Lapik; D. N. Tulyakov. On expanding neighborhoods of local universality of Gaussian unitary ensembles. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 182-191. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a12/