$C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 7-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a brief survey of the recent results in problems of approximating functions by solutions of homogeneous elliptic systems of PDEs on compact sets in the plane in the norms of $C^m$ spaces, $m\geq0$. We focus on general second-order systems. For such systems the paper complements the recent survey by M. Mazalov, P. Paramonov, and K. Fedorovskiy (2012), where the problems of $C^m$ approximation of functions by holomorphic, harmonic, and polyanalytic functions as well as by solutions of homogeneous elliptic PDEs with constant complex coefficients were considered.
Mots-clés : elliptic equation, $s$-dimensional Hausdorff content
Keywords: second-order elliptic system, $C^m$ approximation, $\kappa _{m,\tau ,\sigma }$-capacity, Vitushkin localization operator.
@article{TRSPY_2018_301_a0,
     author = {A. O. Bagapsh and K. Yu. Fedorovskiy},
     title = {$C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane},
     journal = {Informatics and Automation},
     pages = {7--17},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a0/}
}
TY  - JOUR
AU  - A. O. Bagapsh
AU  - K. Yu. Fedorovskiy
TI  - $C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane
JO  - Informatics and Automation
PY  - 2018
SP  - 7
EP  - 17
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a0/
LA  - ru
ID  - TRSPY_2018_301_a0
ER  - 
%0 Journal Article
%A A. O. Bagapsh
%A K. Yu. Fedorovskiy
%T $C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane
%J Informatics and Automation
%D 2018
%P 7-17
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a0/
%G ru
%F TRSPY_2018_301_a0
A. O. Bagapsh; K. Yu. Fedorovskiy. $C^m$ approximation of functions by solutions of second-order elliptic systems on compact sets in the plane. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 7-17. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a0/

[1] A. O. Bagapsh, K. Yu. Fedorovskiy, “$C^1$ approximation of functions by solutions of second-order elliptic systems on compact sets in $\mathbb R^2$”, Proc. Steklov Inst. Math., 298 (2017), 35–50 | DOI | DOI | MR | Zbl

[2] Fedorovskiy K. Yu., “Two problems on approximation by solutions of elliptic systems on compact sets in the plane”, Complex Var. Elliptic Eqns., 63:7–8 (2018), 961–975 | DOI | MR | Zbl

[3] Hua L. K., Lin W., Wu C.-Q., Second-order systems of partial differential equations in the plane, Res. Notes Math., 128, Pitman Adv. Publ. Program, Boston, 1985 | MR | Zbl

[4] Mateu J., Netrusov Yu., Orobitg J., Verdera J., “BMO and Lipschitz approximation by solutions of elliptic equations”, Ann. Inst. Fourier, 46:4 (1996), 1057–1081 | DOI | MR

[5] M. Ya. Mazalov, “Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$”, Sb. Math., 195:5 (2004), 687–709 | DOI | DOI | MR | Zbl

[6] M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Sb. Math., 199:1 (2008), 13–44 | DOI | DOI | MR | Zbl

[7] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russ. Math. Surv., 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl

[8] S. N. Mergelyan, Uniform approximations to functions of a complex variable, AMS Transl., 101, Am. Math. Soc., Providence, RI, 1954 | MR | MR | Zbl | Zbl

[9] Narasimhan R., Analysis on real and complex manifolds, Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1968 | MR | Zbl

[10] O'Farrell A. G., “Rational approximation in Lipschitz norms. II”, Proc. R. Ir. Acad. Sect. A, 79 (1979), 103–114 | MR | Zbl

[11] P. V. Paramonov, “On harmonic approximation in the $C^1$-norm”, Math. USSR-Sb., 71:1 (1992), 183–207 | DOI | MR | Zbl | Zbl

[12] P. V. Paramonov, “On approximation by harmonic polynomials in the $C^1$-norm on compact sets in $\mathbb R^2$”, Russ. Acad. Sci. Izv. Math., 42:2 (1994), 321–331 | MR | Zbl

[13] P. V. Paramonov, K. Yu. Fedorovskiy, “Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations”, Sb. Math., 190:2 (1999), 285–307 | DOI | DOI | MR | Zbl

[14] N. N. Tarkhanov, “Uniform approximation by solutions of elliptic systems”, Math. USSR-Sb., 61:2 (1988), 351–377 | DOI | MR | Zbl | Zbl

[15] Verdera J., “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl

[16] Verdera J., “Removability, capacity and approximation”, Complex potential theory, Proc. NATO Adv. Study Inst. Sémin. math. super. (Montréal, 1993), NATO Adv. Sci. Int. Ser. C: Math. Phys. Sci., 439, Kluwer, Dordrecht, 1994, 419–473 | MR | Zbl