Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_300_a7, author = {A. G. Kulikovskii and A. P. Chugainova}, title = {Shock waves in anisotropic cylinders}, journal = {Informatics and Automation}, pages = {109--122}, publisher = {mathdoc}, volume = {300}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a7/} }
A. G. Kulikovskii; A. P. Chugainova. Shock waves in anisotropic cylinders. Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 109-122. http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a7/
[1] V. L. Berdichevsky, Variational Principles of Continuum Mechanics, v. I, Fundamentals, Springer, Berlin, 2009 ; v. II, Applications, Springer, Berlin, 2009 | MR | MR
[2] A. P. Chugainova, “Asymptotic behavior of nonlinear waves in elastic media with dispersion and dissipation”, Theor. Math. Phys., 147 (2006), 646–659 | DOI | DOI | MR | Zbl
[3] A. P. Chugainova, “Self-similar asymptotics of wave problems and the structures of non-classical discontinuities in non-linearly elastic media with dispersion and dissipation”, J. Appl. Math. Mech., 71 (2007), 701–711 | DOI | MR
[4] A. P. Chugainova, “Special discontinuities in nonlinearly elastic media”, Comput. Math. Math. Phys., 57 (2017), 1013–1021 | DOI | DOI | MR
[5] Chugainova A. P., Il'ichev A. T., Kulikovskii A. G., Shargatov V. A., “Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: selection conditions for a unique solution”, IMA J. Appl. Math., 82:3 (2017), 496–525 | MR
[6] A. P. Chugainova, V. A. Shargatov, “Stability of discontinuity structures described by a generalized KdV–Burgers equation”, Comput. Math. Math. Phys., 56 (2016), 263–277 | DOI | DOI | MR | Zbl
[7] A. N. Druz', N. A. Polyakov, Yu. A. Ustinov, “Homogeneous solutions and Saint-Venant problems for a naturally twisted rod”, J. Appl. Math. Mech., 60 (1996), 657–664 | DOI | MR
[8] A. N. Druz', Yu. A. Ustinov, “Green's tensor for an elastic cylinder and its applications in the development of the Saint-Venant theory”, J. Appl. Math. Mech., 60 (1996), 97–104 | DOI | MR
[9] V. I. Erofeev, “Nonlinear flexural and torsional waves in rods and rod systems”, Vestn. Nauchn.-Tekh. Razvitiya, 2009, no. 4, 46–50 | MR
[10] V. I. Erofeev, N. V. Klyueva, “Propagation of nonlinear torsional waves in a beam made of a different-modulus material”, Mech. Solids, 38:5 (2003), 122–126
[11] M. F. Glushko, “Investigation of deformations and stresses in twisted ropes with real wire-contact conditions taken into account”, Izv. Vyssh. Uchebn. Zaved. Gornyi Zh., 1961, no. 11, 103–118
[12] Hanyga A., On the solution to the Riemann problem for arbitrary hyperbolic system of conservation laws, Publ. Inst. Geophys. Pol. Acad. Sci., A-1, Państw. Wydawn. Nauk., Warszawa, 1976
[13] A. T. Il'ichev, A. P. Chugainova, “Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential”, Proc. Steklov Inst. Math., 295 (2016), 148–157 | DOI | DOI | MR
[14] A. G. Kulikovskii, “Properties of shock adiabats in the neighborhood of Jouguet points”, Fluid Dyn., 14 (1979), 317–320 | DOI
[15] A. G. Kulikovskii, A. P. Chugainova, “Simulation of the influence of small-scale dispersion processes in a continuum on the formation of large-scale phenomena”, Comput. Math. Math. Phys., 44 (2004), 1062–1068 | MR | Zbl
[16] A. G. Kulikovskii, A. P. Chugainova, “Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory”, Russ. Math. Surv., 63 (2008), 283–350 | DOI | DOI | MR | Zbl
[17] A. G. Kulikovskii, A. P. Chugainova, “On the steady-state structure of shock waves in elastic media and dielectrics”, J. Exp. Theor. Phys., 110:5 (2010), 851–862 | DOI
[18] A. G. Kulikovskii, A. P. Chugainova, “Shock waves in elastoplastic media with the structure defined by the stress relaxation process”, Proc. Steklov Inst. Math., 289 (2015), 167–182 | DOI | DOI | MR
[19] A. G. Kulikovskii, A. P. Chugainova, “A self-similar wave problem in a Prandtl–Reuss elastoplastic medium”, Proc. Steklov Inst. Math., 295 (2016), 179–189 | DOI | DOI | MR
[20] A. G. Kulikovskii, A. P. Chugainova, “Study of discontinuities in solutions of the Prandtl–Reuss elastoplasticity equations”, Comput. Math. Math. Phys., 56 (2016), 637–649 | DOI | DOI | MR | Zbl
[21] A. G. Kulikovskii, A. P. Chugainova, “Long nonlinear waves in anisotropic cylinders”, Comput. Math. Math. Phys., 57 (2017), 1194–1200 | DOI | DOI | MR
[22] A. G. Kulikovskii, A. P. Chugainova, V. A. Shargatov, “Uniqueness of self-similar solutions to the Riemann problem for the Hopf equation with complex nonlinearity”, Comput. Math. Math. Phys., 56 (2016), 1355–1362 | DOI | DOI | MR
[23] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman Hall/CRC, Boca Raton, FL, 2001 | MR | MR
[24] A. G. Kulikovskii, E. I. Sveshnikova, “On shock wave propagation in stressed isotropic nonlinearly elastic media”, J. Appl. Math. Mech., 44 (1980), 367–374 | DOI | MR
[25] A. G. Kulikovskii, E. I. Sveshnikova, “Investigation of the shock adiabat of quasitransverse shock waves in a prestressed elastic medium”, J. Appl. Math. Mech., 46 (1982), 667–673 | DOI
[26] A. G. Kulikovskii, E. I. Sveshnikova, “A selfsimilar problem on the action of a sudden load on the boundary of an elastic half-space”, J. Appl. Math. Mech., 49 (1985), 214–220 | DOI | MR
[27] A. G. Kulikovskii, E. I. Sveshnikova, Nonlinear Waves in Elastic Media, CRC, Boca Raton, FL, 1995 | MR
[28] L. D. Landau, E. M. Lifshits, Course of Theoretical Physics, v. 6, Fluid Mechanics, Pergamon, Oxford, 1987 | MR
[29] Lax P. D., “Hyperbolic systems of conservation laws. II”, Commun. Pure Appl. Math., 10 (1957), 537–566 | DOI | MR
[30] A. A. Malashin, “Longitudinal, transverse, and torsion waves and oscillations in musical strings”, Dokl. Phys., 54:1 (2009), 43–46 | DOI | MR
[31] Yu. N. Rabotnov, Mechanics of a Deformable Solid, Nauka, Moscow, 1988 (in Russian)
[32] Kh. A. Rakhmatulin, K. A. Adylov, “Normal transverse impact against spiral wire cables”, Vestn. Mosk. Univ. Ser. 1: Mat., Mekh., 1976, no. 6, 105–108
[33] G. N. Savin, “Equations of motion of a naturally twisted thread of variable length”, Dokl. Akad. Nauk Ukr. SSR, 1960, no. 6, 726–730
[34] L. I. Sedov, Mechanics of Continuous Media, v. 1, World Sci., River Edge, NJ, 1997 | MR | MR
[35] E. I. Sveshnikova, “Riemann waves in an elastic medium with small cubic anisotropy”, J. Appl. Math. Mech., 69 (2005), 71–78 | DOI | MR
[36] E. I. Sveshnikova, “Shock waves in an elastic medium with cubic anisotropy”, J. Appl. Math. Mech., 70 (2006), 611–620 | DOI | MR
[37] Yu. A. Ustinov, Saint-Venant Problems for Pseudocylinders, Fizmatlit, Moscow, 2003 (in Russian)