Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_300_a2, author = {V. V. Vedeneev and A. B. Poroshina}, title = {Stability of an elastic tube conveying {a~non-Newtonian} fluid and having a~locally weakened section}, journal = {Informatics and Automation}, pages = {42--64}, publisher = {mathdoc}, volume = {300}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a2/} }
TY - JOUR AU - V. V. Vedeneev AU - A. B. Poroshina TI - Stability of an elastic tube conveying a~non-Newtonian fluid and having a~locally weakened section JO - Informatics and Automation PY - 2018 SP - 42 EP - 64 VL - 300 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a2/ LA - ru ID - TRSPY_2018_300_a2 ER -
%0 Journal Article %A V. V. Vedeneev %A A. B. Poroshina %T Stability of an elastic tube conveying a~non-Newtonian fluid and having a~locally weakened section %J Informatics and Automation %D 2018 %P 42-64 %V 300 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a2/ %G ru %F TRSPY_2018_300_a2
V. V. Vedeneev; A. B. Poroshina. Stability of an elastic tube conveying a~non-Newtonian fluid and having a~locally weakened section. Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 42-64. http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a2/
[1] M. V. Abakumov, I. V. Ashmetkov, N. B. Esikova, V. B. Koshelev, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, A. P. Favorsky, A. B. Khrulenko, “Strategy of mathematical cardiovascular system modeling”, Mat. Model., 12:2 (2000), 106–117 | Zbl
[2] Anand M., Rajagopal K. R., “A shear-thinning viscoelastic fluid model for describing the flow of blood”, Int. J. Cardiovasc. Med. Sci., 4:2 (2004), 59–68
[3] A. M. Barlukova, A. A. Cherevko, A. P. Chupakhin, “Traveling waves in a one-dimensional model of hemodynamics”, J. Appl. Mech. Tech. Phys., 55 (2014), 917–926 | DOI | MR
[4] Bers A., “Space-time evolution of plasma instabilities – absolute and convective”, Handbook of plasma physics, v. 1, eds. A. A. Galeev, R. N. Sudan, North-Holland, Amsterdam, 1983, 451–517
[5] Bertram C. D., Raymond C. J., Pedley T. J., “Mapping of instabilities for flow through collapsed tubes of differing length”, J. Fluids Struct., 4:2 (1990), 125–153 | DOI
[6] Bertram C. D., Tscherry J., “The onset of flow-rate limitation and flow-induced oscillations in collapsible tubes”, J. Fluids Struct., 22:8 (2006), 1029–1045 | DOI
[7] Briggs R. J., Electron-stream interaction with plasmas, MIT Press, Cambridge, MA, 1964
[8] L. Formaggia, A. Quarteroni, A. Veneziani (eds.), Cardiovascular mathematics: Modeling and simulation of the circulatory system, Model. Simul. Appl., 1, Springer, Milano, 2010 | MR
[9] Chomaz J.-M., Huerre P., Redekopp L. G., “A frequency selection criterion in spatially developing flows”, Stud. Appl. Math., 84:2 (1991), 119–144 | DOI | MR
[10] Coene P.-P. L. O., Groen A. K., Davids P. H. P., Hardeman M., Tytgat G. N. J., Huibregtse K., “Bile viscosity in patients with biliary drainage. Effect of co-trimoxazole and N-acetylcysteine and role in stent clogging”, Scand. J. Gastroenterol., 29:8 (1994), 757–763 | DOI
[11] Formaggia L., Lamponi D., Quarteroni A., “One-dimensional models for blood flow in arteries”, J. Eng. Math., 47 (2003), 251–276 | DOI | MR
[12] Galdi G. P., Rannacher R., Robertson A. M., Turek S., Hemodynamical flows: Modeling, analysis and simulation, Birkhäuser, Basel, 2008 | MR
[13] Gijsen F. J. H., van de Vosse F. N., Janssen J. D., “The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model”, J. Biomech., 32:6 (1999), 601–608 | DOI
[14] A. G. Gorshkov, V. I. Morozov, A. T. Ponomarev, F. N. Shklyarchuk, Aerohydroelasticity of Designs, Fizmatlit, Moscow, 2000 (in Russian)
[15] Grotberg J. B., Jensen O. E., “Biofluid mechanics in flexible tubes”, Annu. Rev. Fluid Mech., 36 (2004), 121–147 | DOI | MR
[16] Heil M., Boyle J., “Self-excited oscillations in three-dimensional collapsible tubes: Simulating their onset and large-amplitude oscillations”, J. Fluid Mech., 652 (2010), 405–426 | DOI | MR
[17] Heil M., Hazel A. L., “Fluid-structure interaction in internal physiological flows”, Annu. Rev. Fluid Mech., 43 (2011), 141–162 | DOI | MR
[18] Jensen O. E., “Instabilities of flow in a collapsed tube”, J. Fluid Mech., 220 (1990), 623–659 | DOI | MR
[19] Jensen O. E., Pedley T. J., “The existence of steady flow in a collapsed tube”, J. Fluid Mech., 206 (1989), 339–374 | DOI | MR
[20] Katz A. I., Chen Y., Moreno A. H., “Flow through a collapsible tube: Experimental analysis and mathematical model”, Biophys. J., 9:10 (1969), 1261–1279 | DOI
[21] Ku D. N., “Blood flow in arteries”, Annu. Rev. Fluid Mech., 29 (1997), 399–434 | DOI | MR
[22] Kuchumov A. G., Gilev V., Popov V., Samartsev V., Gavrilov V., “Non-Newtonian flow of pathological bile in the biliary system: experimental investigation and CFD simulations”, Korea–Aust. Rheol. J., 26:1 (2014), 81–90 | DOI
[23] Kudenatti R. B., Bujurke N. M., Pedley T. J., “Stability of two-dimensional collapsible-channel flow at high Reynolds number”, J. Fluid Mech., 705 (2012), 371–386 | DOI | MR
[24] Le Dizès S., Huerre P., Chomaz J. M., Monkewitz P. A., “Linear global modes in spatially developing media”, Philos. Trans. R. Soc. London A, 354:1705 (1996), 169–212 | DOI
[25] Liu H. F., Luo X. Y., Cai Z. X., “Stability and energy budget of pressure-driven collapsible channel flows”, J. Fluid Mech., 705 (2012), 348–370 | DOI | MR
[26] Luo X. Y., Pedley T. J., “Multiple solutions and flow limitation in collapsible channel flows”, J. Fluid Mech., 420 (2000), 301–324 | DOI
[27] Marzo A., Luo X. Y., Bertram C. D., “Three-dimensional collapse and steady flow in thick-walled flexible tubes”, J. Fluids Struct., 20:6 (2005), 817–835 | DOI
[28] Metzner A. B., Reed J. C., “Flow of non-Newtonian fluids – Correlation of the laminar, transition, and turbulent-flow regions”, AIChE J., 1:4 (1955), 434–440 | DOI
[29] Moore J. E. (Jr.), Maier S. E., Ku D. N., Boesiger P., “Hemodynamics in the abdominal aorta: A comparison of in vitro and in vivo measurements”, J. Appl. Physiol., 76:4 (1985), 1520–1527 | DOI
[30] Païdoussis M. P., Fluid-structure interactions: Slender structures and axial flow, v. 1, Acad. Press, San Diego, CA, 1998
[31] Pedley T. J., “Arterial and venous fluid dynamics”, Cardiovascular fluid mechanics, eds. G. Pedrizzetti, K. Perktold, Springer, Wien, 2003, 1–72
[32] Pedley T. J., Brook B. S., Seymour R. S., “Blood pressure and flow rate in the giraffe jugular vein”, Philos. Trans. R. Soc. London B: Biol. Sci., 351:1342 (1996), 855–866 | DOI
[33] Reymond P., Merenda F., Perren F., Rüfenacht D., Stergiopulos N., “Validation of a one-dimensional model of the systemic arterial tree”, Amer. J. Physiol. Heart Circ. Physiol., 297:1 (2009), 208–222 | DOI
[34] Shapiro A. H., “Physiological and medical aspects of flow in collapsible tubes”, Proc. 6th Canadian Congress of Applied Mechanics, Univ. Br. Columbia, Vancouver, 1977, 883–906
[35] S. S. Simakov, A. S. Kholodov, A. V. Evdokimov, “Methods of calculation of global blood flow in a human body involving heterogeneous computation models”, Medicine in the Mirror of Informatics, Nauka, Moscow, 2008, 124–170 (in Russian)
[36] Smith N. P., Pullan A. J., Hunter P. J., “An anatomically based model of transient coronary blood flow in the heart”, SIAM J. Appl. Math., 62:3 (2002), 990–1018 | DOI | MR
[37] Vassilevski Yu., Simakov S., Salamatova V., Ivanov Yu., Dobroserdova T., “Numerical issues of modelling blood flow in networks of vessels with pathologies”, Russ. J. Numer. Anal. Math. Model., 26:6 (2011), 605–622 | MR
[38] Whittaker R. J., Heil M., Jensen O. E., Waters S. L., “Predicting the onset of high-frequency self-excited oscillations in elastic-walled tubes”, Proc. R. Soc. London A, 466 (2010), 3635–3657 | DOI | MR
[39] V. S. Yushutin, “Stability of flow of a nonlinear viscous power-law hardening medium in a deformable channel”, Moscow Univ. Mech. Bull., 67:4 (2012), 99–102 | DOI