Stability of an elastic tube conveying a~non-Newtonian fluid and having a~locally weakened section
Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 42-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the stability analysis of the flow of a non-Newtonian power-law fluid in an elastic tube. Integrating the equations of motion over the cross section, we obtain a one-dimensional equation that describes long-wave low-frequency motions of the system in which the rheology of the flowing fluid is taken into account. In the first part of the paper, we find a stability criterion for an infinite uniform tube and an absolute instability criterion. We show that instability under which the axial symmetry of motion of the tube is preserved is possible only for a power-law index of $n0.611$, and absolute instability is possible only for $n1/3$; thus, after the loss of stability of a linear viscous medium, the flow cannot preserve the axial symmetry, which agrees with the available results. In the second part of the paper, applying the WKB method, we analyze the stability of a tube whose stiffness varies slowly in space in such a way that there is a “weakened” region of finite length in which the “fluid–tube” system is locally unstable. We prove that the tube is globally unstable if the local instability is absolute; otherwise, the local instability is suppressed by the surrounding locally stable regions. Solving numerically the eigenvalue problem, we demonstrate the high accuracy of the result obtained by the WKB method even for a sufficiently fast variation of stiffness along the tube axis.
@article{TRSPY_2018_300_a2,
     author = {V. V. Vedeneev and A. B. Poroshina},
     title = {Stability of an elastic tube conveying {a~non-Newtonian} fluid and having a~locally weakened section},
     journal = {Informatics and Automation},
     pages = {42--64},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a2/}
}
TY  - JOUR
AU  - V. V. Vedeneev
AU  - A. B. Poroshina
TI  - Stability of an elastic tube conveying a~non-Newtonian fluid and having a~locally weakened section
JO  - Informatics and Automation
PY  - 2018
SP  - 42
EP  - 64
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a2/
LA  - ru
ID  - TRSPY_2018_300_a2
ER  - 
%0 Journal Article
%A V. V. Vedeneev
%A A. B. Poroshina
%T Stability of an elastic tube conveying a~non-Newtonian fluid and having a~locally weakened section
%J Informatics and Automation
%D 2018
%P 42-64
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a2/
%G ru
%F TRSPY_2018_300_a2
V. V. Vedeneev; A. B. Poroshina. Stability of an elastic tube conveying a~non-Newtonian fluid and having a~locally weakened section. Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 42-64. http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a2/

[1] M. V. Abakumov, I. V. Ashmetkov, N. B. Esikova, V. B. Koshelev, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, A. P. Favorsky, A. B. Khrulenko, “Strategy of mathematical cardiovascular system modeling”, Mat. Model., 12:2 (2000), 106–117 | Zbl

[2] Anand M., Rajagopal K. R., “A shear-thinning viscoelastic fluid model for describing the flow of blood”, Int. J. Cardiovasc. Med. Sci., 4:2 (2004), 59–68

[3] A. M. Barlukova, A. A. Cherevko, A. P. Chupakhin, “Traveling waves in a one-dimensional model of hemodynamics”, J. Appl. Mech. Tech. Phys., 55 (2014), 917–926 | DOI | MR

[4] Bers A., “Space-time evolution of plasma instabilities – absolute and convective”, Handbook of plasma physics, v. 1, eds. A. A. Galeev, R. N. Sudan, North-Holland, Amsterdam, 1983, 451–517

[5] Bertram C. D., Raymond C. J., Pedley T. J., “Mapping of instabilities for flow through collapsed tubes of differing length”, J. Fluids Struct., 4:2 (1990), 125–153 | DOI

[6] Bertram C. D., Tscherry J., “The onset of flow-rate limitation and flow-induced oscillations in collapsible tubes”, J. Fluids Struct., 22:8 (2006), 1029–1045 | DOI

[7] Briggs R. J., Electron-stream interaction with plasmas, MIT Press, Cambridge, MA, 1964

[8] L. Formaggia, A. Quarteroni, A. Veneziani (eds.), Cardiovascular mathematics: Modeling and simulation of the circulatory system, Model. Simul. Appl., 1, Springer, Milano, 2010 | MR

[9] Chomaz J.-M., Huerre P., Redekopp L. G., “A frequency selection criterion in spatially developing flows”, Stud. Appl. Math., 84:2 (1991), 119–144 | DOI | MR

[10] Coene P.-P. L. O., Groen A. K., Davids P. H. P., Hardeman M., Tytgat G. N. J., Huibregtse K., “Bile viscosity in patients with biliary drainage. Effect of co-trimoxazole and N-acetylcysteine and role in stent clogging”, Scand. J. Gastroenterol., 29:8 (1994), 757–763 | DOI

[11] Formaggia L., Lamponi D., Quarteroni A., “One-dimensional models for blood flow in arteries”, J. Eng. Math., 47 (2003), 251–276 | DOI | MR

[12] Galdi G. P., Rannacher R., Robertson A. M., Turek S., Hemodynamical flows: Modeling, analysis and simulation, Birkhäuser, Basel, 2008 | MR

[13] Gijsen F. J. H., van de Vosse F. N., Janssen J. D., “The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model”, J. Biomech., 32:6 (1999), 601–608 | DOI

[14] A. G. Gorshkov, V. I. Morozov, A. T. Ponomarev, F. N. Shklyarchuk, Aerohydroelasticity of Designs, Fizmatlit, Moscow, 2000 (in Russian)

[15] Grotberg J. B., Jensen O. E., “Biofluid mechanics in flexible tubes”, Annu. Rev. Fluid Mech., 36 (2004), 121–147 | DOI | MR

[16] Heil M., Boyle J., “Self-excited oscillations in three-dimensional collapsible tubes: Simulating their onset and large-amplitude oscillations”, J. Fluid Mech., 652 (2010), 405–426 | DOI | MR

[17] Heil M., Hazel A. L., “Fluid-structure interaction in internal physiological flows”, Annu. Rev. Fluid Mech., 43 (2011), 141–162 | DOI | MR

[18] Jensen O. E., “Instabilities of flow in a collapsed tube”, J. Fluid Mech., 220 (1990), 623–659 | DOI | MR

[19] Jensen O. E., Pedley T. J., “The existence of steady flow in a collapsed tube”, J. Fluid Mech., 206 (1989), 339–374 | DOI | MR

[20] Katz A. I., Chen Y., Moreno A. H., “Flow through a collapsible tube: Experimental analysis and mathematical model”, Biophys. J., 9:10 (1969), 1261–1279 | DOI

[21] Ku D. N., “Blood flow in arteries”, Annu. Rev. Fluid Mech., 29 (1997), 399–434 | DOI | MR

[22] Kuchumov A. G., Gilev V., Popov V., Samartsev V., Gavrilov V., “Non-Newtonian flow of pathological bile in the biliary system: experimental investigation and CFD simulations”, Korea–Aust. Rheol. J., 26:1 (2014), 81–90 | DOI

[23] Kudenatti R. B., Bujurke N. M., Pedley T. J., “Stability of two-dimensional collapsible-channel flow at high Reynolds number”, J. Fluid Mech., 705 (2012), 371–386 | DOI | MR

[24] Le Dizès S., Huerre P., Chomaz J. M., Monkewitz P. A., “Linear global modes in spatially developing media”, Philos. Trans. R. Soc. London A, 354:1705 (1996), 169–212 | DOI

[25] Liu H. F., Luo X. Y., Cai Z. X., “Stability and energy budget of pressure-driven collapsible channel flows”, J. Fluid Mech., 705 (2012), 348–370 | DOI | MR

[26] Luo X. Y., Pedley T. J., “Multiple solutions and flow limitation in collapsible channel flows”, J. Fluid Mech., 420 (2000), 301–324 | DOI

[27] Marzo A., Luo X. Y., Bertram C. D., “Three-dimensional collapse and steady flow in thick-walled flexible tubes”, J. Fluids Struct., 20:6 (2005), 817–835 | DOI

[28] Metzner A. B., Reed J. C., “Flow of non-Newtonian fluids – Correlation of the laminar, transition, and turbulent-flow regions”, AIChE J., 1:4 (1955), 434–440 | DOI

[29] Moore J. E. (Jr.), Maier S. E., Ku D. N., Boesiger P., “Hemodynamics in the abdominal aorta: A comparison of in vitro and in vivo measurements”, J. Appl. Physiol., 76:4 (1985), 1520–1527 | DOI

[30] Païdoussis M. P., Fluid-structure interactions: Slender structures and axial flow, v. 1, Acad. Press, San Diego, CA, 1998

[31] Pedley T. J., “Arterial and venous fluid dynamics”, Cardiovascular fluid mechanics, eds. G. Pedrizzetti, K. Perktold, Springer, Wien, 2003, 1–72

[32] Pedley T. J., Brook B. S., Seymour R. S., “Blood pressure and flow rate in the giraffe jugular vein”, Philos. Trans. R. Soc. London B: Biol. Sci., 351:1342 (1996), 855–866 | DOI

[33] Reymond P., Merenda F., Perren F., Rüfenacht D., Stergiopulos N., “Validation of a one-dimensional model of the systemic arterial tree”, Amer. J. Physiol. Heart Circ. Physiol., 297:1 (2009), 208–222 | DOI

[34] Shapiro A. H., “Physiological and medical aspects of flow in collapsible tubes”, Proc. 6th Canadian Congress of Applied Mechanics, Univ. Br. Columbia, Vancouver, 1977, 883–906

[35] S. S. Simakov, A. S. Kholodov, A. V. Evdokimov, “Methods of calculation of global blood flow in a human body involving heterogeneous computation models”, Medicine in the Mirror of Informatics, Nauka, Moscow, 2008, 124–170 (in Russian)

[36] Smith N. P., Pullan A. J., Hunter P. J., “An anatomically based model of transient coronary blood flow in the heart”, SIAM J. Appl. Math., 62:3 (2002), 990–1018 | DOI | MR

[37] Vassilevski Yu., Simakov S., Salamatova V., Ivanov Yu., Dobroserdova T., “Numerical issues of modelling blood flow in networks of vessels with pathologies”, Russ. J. Numer. Anal. Math. Model., 26:6 (2011), 605–622 | MR

[38] Whittaker R. J., Heil M., Jensen O. E., Waters S. L., “Predicting the onset of high-frequency self-excited oscillations in elastic-walled tubes”, Proc. R. Soc. London A, 466 (2010), 3635–3657 | DOI | MR

[39] V. S. Yushutin, “Stability of flow of a nonlinear viscous power-law hardening medium in a deformable channel”, Moscow Univ. Mech. Bull., 67:4 (2012), 99–102 | DOI